YOLOv11训练教程:PyTorch与PyCharm在Windows 11下的完整指南
介绍与引言
YOLO(You Only Look Once)是当前最流行的实时目标检测算法系列之一,YOLOv11作为该系列的最新演进版本,继承了YOLO家族高效、快速的特点,同时在精度和速度上有了进一步提升。本教程将详细介绍如何在Windows 11系统下使用PyTorch框架和PyCharm IDE进行YOLOv11模型的训练与部署。
目标检测作为计算机视觉的核心任务之一,在自动驾驶、安防监控、工业质检、医疗影像分析等领域有着广泛应用。YOLOv11凭借其出色的实时性能,特别适合需要快速响应的应用场景。
技术背景
YOLO发展历程
YOLO系列自2016年首次提出以来,经历了多个版本的迭代:
- YOLOv1-v3: Joseph Redmon主导的基础版本
- YOLOv4: Alexey Bochkovskiy优化的高性能版本
- YOLOv5: Ultralytics推出的PyTorch实现
- YOLOv6-v8: 各研究团队的不同改进版本
- YOLOv9-v11: 最新演进版本,融合了Transformer等现代架构