这里写自定义目录标题
- YOLOv11改进:利用RT-DETR主干网络PPHGNetV2助力轻量化目标检测
-
- 1. 介绍
- 2. 引言
- 3. 技术背景
-
- 3.1 YOLOv11概述
- 3.2 RT-DETR与PPHGNetV2
- 3.3 相关工作
- 4. 应用使用场景
- 5. 详细代码实现
-
- 5.1 环境准备
- 5.2 PPHGNetV2主干网络实现
- 5.3 YOLOv11与PPHGNetV2集成
- 5.4 训练代码示例
- 6. 原理解释
-
- 6.1 核心特性
- 6.2 算法原理流程图
- 6.3 算法原理解释
- 7. 运行结果与测试
-
- 7.1 性能对比
- 7.2 测试代码
- 8. 部署场景
-
- 8.1 移动端部署(TensorRT)
- 8.2 ONNX导出
- 9. 疑难解答
- 10. 未来展望
- 11. 技术趋势与挑战
- 12. 总结
- 欢迎使用Markdown编辑器
-
- 新的改变
- 功能快捷键
- 合理的创建标题,有助于目录的生成
- 如何插入一段漂亮的代码片
- 生成一个适合你的列表
- 创建一个表格
-
- 设定内容居中、居左、居右
- SmartyPants
- 创建一个自定义列表
- 如何创建一个注脚
- 注释也是必不可少的
- KaTeX数学公式
- 新的甘特图功能,丰富你的文章
- UML 图表
- FLowchart流程图
- 导出与导入
-
- 导出
- 导入
YOLOv11改进:利用RT-DETR主干网络PPHGNetV2助力轻量化目标检测
1. 介绍
目标检测作为计算机视觉领域的核心任务之一,在自动驾驶、视频监控、医疗影像分析等领域有着广泛应用。YOLO(You Only Look Once)系列作为实时目标检测的代表性算法,以其高效性和准确性著称。YOLOv11作为该系列的最新演进版本,在保持实时性的同时进一步提升了检测精度。
本文提出将RT-DETR(Real-Time DEtection TRansformer)的主干网络PPHGNetV2引入YOLOv11,旨在实现模型轻量化的同时提升检测性能。PPHGNetV2通过精心设计的混合网络结构,在计算效率和特征提取能力之间取得了优异平衡。
2. 引言
当前目标检测领域面临的主要挑战包括:
- 模型复杂度与实时性要求的矛盾
- 小目标检测精度不足
- 模型部署在边缘设备的资源限制
传统YOLO系列主要采用CSPDarknet作为主干网络,虽然性能稳定但存在参数量大、计算复杂度高的问题。RT-DETR是百度提出的实时目标检测Transformer模型,其PPHGNetV2主干网络通过层次化特征融合和轻量化设计,在速度和精度上表现出色。
本文将PPHGNetV2主干网络迁移至YO