YOLOv11改进:利用RT-DETR主干网络PPHGNetV2助力轻量化目标检测

这里写自定义目录标题

  • YOLOv11改进:利用RT-DETR主干网络PPHGNetV2助力轻量化目标检测
    • 1. 介绍
    • 2. 引言
    • 3. 技术背景
      • 3.1 YOLOv11概述
      • 3.2 RT-DETR与PPHGNetV2
      • 3.3 相关工作
    • 4. 应用使用场景
    • 5. 详细代码实现
      • 5.1 环境准备
      • 5.2 PPHGNetV2主干网络实现
      • 5.3 YOLOv11与PPHGNetV2集成
      • 5.4 训练代码示例
    • 6. 原理解释
      • 6.1 核心特性
      • 6.2 算法原理流程图
      • 6.3 算法原理解释
    • 7. 运行结果与测试
      • 7.1 性能对比
      • 7.2 测试代码
    • 8. 部署场景
      • 8.1 移动端部署(TensorRT)
      • 8.2 ONNX导出
    • 9. 疑难解答
    • 10. 未来展望
    • 11. 技术趋势与挑战
    • 12. 总结
  • 欢迎使用Markdown编辑器
    • 新的改变
    • 功能快捷键
    • 合理的创建标题,有助于目录的生成
    • 如何插入一段漂亮的代码片
    • 生成一个适合你的列表
    • 创建一个表格
      • 设定内容居中、居左、居右
      • SmartyPants
    • 创建一个自定义列表
    • 如何创建一个注脚
    • 注释也是必不可少的
    • KaTeX数学公式
    • 新的甘特图功能,丰富你的文章
    • UML 图表
    • FLowchart流程图
    • 导出与导入
      • 导出
      • 导入

YOLOv11改进:利用RT-DETR主干网络PPHGNetV2助力轻量化目标检测

1. 介绍

目标检测作为计算机视觉领域的核心任务之一,在自动驾驶、视频监控、医疗影像分析等领域有着广泛应用。YOLO(You Only Look Once)系列作为实时目标检测的代表性算法,以其高效性和准确性著称。YOLOv11作为该系列的最新演进版本,在保持实时性的同时进一步提升了检测精度。

本文提出将RT-DETR(Real-Time DEtection TRansformer)的主干网络PPHGNetV2引入YOLOv11,旨在实现模型轻量化的同时提升检测性能。PPHGNetV2通过精心设计的混合网络结构,在计算效率和特征提取能力之间取得了优异平衡。

2. 引言

当前目标检测领域面临的主要挑战包括:

  • 模型复杂度与实时性要求的矛盾
  • 小目标检测精度不足
  • 模型部署在边缘设备的资源限制

传统YOLO系列主要采用CSPDarknet作为主干网络,虽然性能稳定但存在参数量大、计算复杂度高的问题。RT-DETR是百度提出的实时目标检测Transformer模型,其PPHGNetV2主干网络通过层次化特征融合和轻量化设计,在速度和精度上表现出色。

本文将PPHGNetV2主干网络迁移至YO

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值