群同态基本定理证明_抽象代数3-1群同态的简单性质与低阶群的结构

9698a92e8deb9bc2b7a97a3a27f47fb6.png

通过同态研究代数结构是一个非常重要的途径。群同态有很好的一些性质。

  • 满同态可以传递代数结构。
  • 群同态保持子群结构,将原象的子群映成像里的子群,将像里的子群拉回去是原象的子群。
  • 群同态把单位元映成单位元,把一个元素的逆元映过去的象是其象的逆。
  • 两个同构的群可以认为是一样的。
  • 下一节我们会讲到:满同态还保持正规子群的结构,将原象的正规子群映成像里的正规子群,将像里的正规子群拉回去是原象中的正规子群。

一、群同态与同构的简单性质

先回忆群同态的定义:

定义1:设G和G̅是群,若映射φ:G⟶G̅,对 ∀a,b∈G 均有:φ(ab)=φ(a)φ(b), 则称φ是群同态映射。 (1)若φ是满射,则称φ为满同态映射.此时称G和G̅同态, 记为 G~ G̅. (2)若φ是单射,则称φ为单同态. (3)若φ是双射,则称φ为群同构,此时记为G≅G̅. (4)群G到自身的同态(同构)叫G的自同态(自同构).

也就是:同态=映射+保持运算;同构=同态+双射。而其中“满同态”十分重要,它具有 “传递”作用


定理1. 设G和G̅是两个有代数运算的集合,它们之间有一个满同态φ。如果G是群,则它的满同态象G̅也是群。(满同态传递群结构)

证:首先满同态保持结合律,在之前的预备知识里就介绍过了。(1)设e是群G的单位元,注意φ是满射,容易验证φ(e)是G̅的单位元;(2)由φ是满同态,G̅中任一个元素都是G中元素a的像
的形式,易验证
,从而G̅中元素都有逆元。

实际上不需要是满同态,任意一个群同态就可以将单位元映成单位元,把一个元素的逆元映过

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值