【代数结构与数理逻辑(三)】商群与群同态

13.3 子群,正规子群和商群

定义13.12(子群)

H ⊆ G H\subseteq G HG​,且H是群

定理(子群的等价性定义)*

定理13.14:H是G的子群,当且仅当H有封闭性和有逆元

证明:

  1. 必要性:H是群

  2. 充分性:

由封闭性和有逆元说明单位元 e ∈ H e\in H eH

结合律,因为 H ⊆ G H\subseteq G HG

定理13.15 H是G的子群,当且仅当对任意的 a , b ∈ H , a b − 1 ∈ H a,b\in H,ab^{-1}\in H a,bH,ab1H

证明:

  1. 在H上满足结合律
  2. 取b=a,则 a a − 1 = e ∈ H aa^{-1}=e\in H aa1=eH
  3. 取a=e,则每个元都有逆元
  4. 对任意的a,b,由(3)知 b − 1 ∈ H b^{-1}\in H b1H,所以满足封闭性

推论13.6 当H为G的子群时,H的单位元就是G的单位元, a a a​在H中的逆元就是它在G中的逆元

定理13.16:H为有限群,则H是G的子群当且仅当H有封闭性

证明:

  1. 必要性:显然

  2. 充分性:

  3. 由于H是有限集,任意 h k ∈ H h^k\in H hkH​​,由鸽笼原理有
    a i = a j a^i=a^j ai=aj
    所以 a i − j = e ∈ H a^{i-j}=e\in H aij=eH,由单位元

  4. 证明有逆元,分类讨论

    1. i − j > 1 i-j>1 ij>1 a ( a i − j − 1 ) = a i − j = e a(a^{i-j-1})=a^{i-j}=e a(aij1)=aij=e,所以a的逆是ai-j-1
    2. i − j ≠ 0 i-j\neq0 ij=0,因为取i,j不同
    3. i − j < 0 i-j<0 ij<0时, a − 1 a^{-1} a1 a j − i − 1 a^{j-i-1} aji1
    4. i − j = 1 i-j=1 ij=1时, a = e a=e a=e

例13.16 找出 S 3 S_3 S3的所有子群

H 1 = { ( 1 ) , ( 2    3 ) } H 2 = { ( 1 ) , ( 1    2 ) } H 3 = { ( 1 ) , ( 1    3 ) } H 4 = { ( 1 ) , ( 1    2    3 ) , ( 1    3    2 ) } \begin{aligned} &H_1=\{(1),(2~~3)\}\\&H_2=\{(1),(1~~2)\}\\&H_3=\{(1),(1~~3)\}\\ &H_4=\{(1),(1~~2~~3),(1~~3~~2)\} \end{aligned} H1={(1),(2  3)}H2={(1),(1  2)}H3={(1),(1  3)}H4={(1),(1  2  3),(1  3  2)}

其中 H 4 = A 3 H_4=A_3 H4=A3(定理:n次交待群是n次对称群的其中一个子群)

例13.17 找出 [ Z 12 ; ⊕ ] [Z_{12};\oplus] [Z12;]​的所有子群

H 1 = { [ 0 ] , [ 2 ] , [ 4 ] , [ 6 ] , [ 8 ] , [ 10 ] } H 2 = { [ 0 ] , [ 4 ] , [ 8 ] } H 3 = { [ 0 ] , [ 3 ] , [ 6 ] , [ 9 ] } H 4 = { [ 0 ] , [ 6 ] } \begin{aligned} &H_1=\{[0],[2],[4],[6],[8],[10]\}\\ &H_2=\{[0],[4],[8]\}\\ &H_3=\{[0],[3],[6],[9]\}\\ &H_4=\{[0],[6]\} \end{aligned} H1={[0],[2],[4],[6],[8],[10]}H2={[0],[4],[8]}H3={[0],[3],[6],[9]}H4={[0],[6]}

这四个子群都是循环群

定义13.13(陪集)

设H是G的子群,取G中一固定元素g,用g与H中的每个元素做乘法,将其结果组成一个集合
g H = { g h ∣ h ∈ H } gH=\{gh|h\in H\} gH={ghhH}

称gH是H的左陪集,同理可定义H的右陪集Hg(当g=e时左右陪集相等,当G是交换群时所有左右陪集相等)

由定义知 e ∈ G e\in G eG,所以H自身也是一个陪集。在一般情况下 H g ≠ g H Hg\neq gH Hg=gH

例13.18 S 3 S_3 S3为例,给出关于 H 1 , H 4 H_1,H_4 H1,H4的左右陪集

(1)
e H 1 = σ 1 H 1 = { ( 1 ) , ( 2    3 ) } σ 2 H 1 = σ 5 H 1 = { ( 1    2 ) ( 1    2    3 ) } σ 3 H 1 = σ 4 H 1 = { ( 1    3 ) ( 1    3    2 ) } H 1 e = H 1 σ 1 = { ( 1 ) , ( 2    3 ) } H 1 σ 2 = H 1 σ 4 = { ( 1    2 ) ( 1    2    3 ) } H 1 σ 3 = H 1 σ 5 = { ( 1    3 ) ( 1    3    2 ) } eH_1=\sigma_1H_1=\{(1),(2~~3)\}\\ \sigma_2H_1=\sigma_5H_1=\{(1~~2)(1~~2~~3)\}\\ \sigma_3H_1=\sigma_4H_1=\{(1~~3)(1~~3~~2)\}\\ H_1e=H_1\sigma_1=\{(1),(2~~3)\}\\ H_1\sigma_2=H_1\sigma_4=\{(1~~2)(1~~2~~3)\}\\ H_1\sigma_3=H_1\sigma_5=\{(1~~3)(1~~3~~2)\}\\ eH1=σ1H1={(1),(2  3)}σ2H1=σ5H1={(1  2)(1  2  3)}σ3H1=σ4H1={(1  3)(1  3  2)}H1e=H1σ1={(1),(2  3)}H1σ2=H1σ4={(1  2)(1  2  3)}H1σ3=H1σ5={(1  3)(1  3  2)}
可见 H 1 H_1 H1有3个左(右)陪集,但他们并不相同

(2)
e H 4 = { e , σ 4 , σ 5 } σ 1 H 4 = { e , σ 4 , σ 5 } = H 4 σ 1 eH_4=\{e,\sigma_4,\sigma_5\}\\ \sigma_1H_4=\{e,\sigma_4,\sigma_5\}=H_4\sigma_1 eH4={e,σ4,σ5}σ1H4={e,σ4,σ5}=H4σ1
H 4 H_4 H4的左右陪集是相等的

例13.19 一个关于无限群的例子, [ Z ; + ] [Z;+] [Z;+]是关于 [ Q ; + ] [Q;+] [Q;+]的一个子群,Z在Q中的陪集形如

a Z = { a + k ∣ k ∈ Z } = { k + a ∣ k ∈ Z } = Z a aZ=\{a+k|k\in Z\}=\{k+a|k\in Z\}=Za aZ={a+kkZ}={k+akZ}=Za

左右陪集相等,因为群是可交换的

由于Z是无限集,可知它的陪集也是无限的

定理(陪集的性质)

引理13.1:当H为有限子群,那么 ∣ g H ∣ = ∣ H ∣ , ∣ H g ∣ = ∣ H ∣ |gH|=|H|,|Hg|=|H| gH=H,Hg=H

证明:

(仅有限阶的情况,可推广到无限阶)

构造双射 ϕ ( h ) = h g : H → H g \phi(h)=hg:H\to Hg ϕ(h)=hg:HHg

引理13.2:$Hg_1=Hg_2或Hg_1\cap Hg_2=\varnothing $​

证明:

假设存在某个 g ∈ H g 1 ∩ H g 2 g\in Hg_1\cap Hg_2 gHg1Hg2,于是存在
h 1 g 1 = h 2 g 2 h_1g_1=h_2g_2 h1g1=h2g2
由上式可得 g 1 = h 1 − 1 h 2 g 2 g_1=h_1^{-1}h_2g_2 g1=h11h2g2

∀ h ∈ H , ( h g 1 ∈ H g 1 ) = h h 1 − 1 h 2 g 2 = h ′ g 2 ∈ H g 2 \forall h\in H,(hg_1\in Hg_1)=hh_1^{-1}h_2g_2=h'g_2\in Hg_2 hH,(hg1Hg1)=hh11h2g2=hg2Hg2

于是 H 1 ⊆ H 2 H_1\subseteq H_2 H1H2,同理 H 2 ⊆ H 1 H_2\subseteq H_1 H2H1

H 1 = H 2 H_1=H_2 H1=H2

推论13.7:子群H的所有陪集构成G的划分

证明:
G = ⋃ g = G H g G=\bigcup_{g=G}Hg G=g=GHg
其中当 H g ≠ H g ′ Hg\neq Hg' Hg=Hg时, H g ∩ H g ′ = ∅ Hg\cap Hg'=\varnothing HgHg=

定义13.14(指数)

关于子群 H H H的所有不同左(右)陪集数

定理13.17(拉格朗日定理)

子群 H H H的阶可整除有限群 G G G的阶,其商是 H H H G G G中的指数

证明:
G = ⋃ g ∈ G H g = ∑ g ∈ G ∣ H g ∣ = k ∣ H ∣ G=\bigcup_{g\in G}Hg=\sum_{g\in G}|Hg|=k|H| G=gGHg=gGHg=kH
​ 故 ∣ G ∣ / ∣ H ∣ = k |G|/|H|=k G∣/∣H=k

推论13.8:有限群 G G G的阶为素数p,则 G G G是循环群

证明:

H H H g g g生成的子群,要求 g 1 = g ≠ e g^1=g\neq e g1=g=e
H = ( g ) = { g 0 = e , g 1 , … , g k − 1 } 又 ∣ H ∣ 整除 ∣ G ∣ , ∴ ∣ H ∣ = p H=(g)=\{g^0=e,g^1,\dots,g^{k-1}\}\\ 又|H|整除|G|,\therefore |H|=p H=(g)={g0=e,g1,,gk1}H整除GH=p
( g ) = G (g)=G (g)=G​,G由g生成

定理:G中任何一个元素(除e)都能生成G

定义(正规子群)

∀ g , g H = H g \forall g,gH=Hg g,gH=Hg

H H H G G G的正规子群

Abel群一定是正规的,非Abel群也可能是正规的

定理13.18(正规子群的等价性定义)

H是正规的,当且仅当 g − 1 h g ∈ H g^{-1}hg\in H g1hgH

证明:

  1. 必要性:因为H是正规的,Hg=gH,则对 ∀ h , g \forall h,g h,g g h ′ = h g gh'=hg gh=hg

    所以存在 h ′ = g − 1 h g h'=g^{-1}hg h=g1hg

  2. 充分性:任取 a h ∈ a H ah\in aH ahaH a h = ( a h a − 1 ) a = h ′ a ∈ H a ah=(aha^{-1})a=h'a\in Ha ah=(aha1)a=haHa,所以 a H = H a aH=Ha aH=Ha H H H是正规的

定义(商集合)

G是群,H是它的正规子群 G / H = { H g ∣ g ∈ G } G/H=\{Hg|g\in G\} G/H={HggG}​​,即 G G G所有不同的陪集,称为 G G G关于 H H H的商集合

定义(G/H上的二元关系 □ \Box

H g □ H g ′ = H g g ′ Hg\Box Hg'=Hgg' HgHg=Hgg

引理13.3 如上定义的 G / H G/H G/H上的二元关系 □ \Box ​​与陪集的代表元选取无关

H上的代表元数量等于H的阶数

任取 x ′ ∈ H x , y ′ ∈ H y x'\in Hx,y'\in Hy xHx,yHy,则 x ′ y ′ = x h 1 ′ y h 2 ′ = x y h 1 ′ h 2 ′ ∈ H x y x'y'=xh_1'yh_2'=xyh_1'h_2'\in Hxy xy=xh1yh2=xyh1h2Hxy,类似有 x y ∈ H x ′ y ′ xy\in Hx'y' xyHxy

引理13.2,xy是 H x ′ y ′ Hx'y' Hxy H x y Hxy Hxy中的公共元素

H x □ H y = H x y = H x ′ y ′ = H x ′ □ H y ′ Hx\Box Hy=Hxy=Hx'y'=Hx'\Box Hy' HxHy=Hxy=Hxy=HxHy,其中x’和x分别代表了不同的代表元

引理13.4 [ G / H ; □ ] [G/H;\Box ] [G/H;]​是群

证明:

  1. □ \Box 满足结合律
  2. H e He He是单位元
  3. H x − 1 Hx^{-1} Hx1是逆元

定义13.17(商群)

[ G / H ; □ ] [G/H;\Box] [G/H;]​​是群,称为 G G G关于 H H H的商群

第13章习题三

习题13.29* 证明:指数为2的子群一定是正规的

证明:

在子群 H H H的陪集有且仅有2个,记为 H 1 H_1 H1 H 2 H_2 H2,因为H是子群, e ∈ H e\in H eH

如果 H H H非正规的,存在g使得 g H = H 1 , H g = H 2 gH=H_1,Hg=H_2 gH=H1,Hg=H2

显然 g ∈ H 1 ∩ H 2 g\in H_1 \cap H_2 gH1H2,则 H 1 = H 2 H_1=H_2 H1=H2矛盾

说明H一定是正规的

习题13.30G为群, C ⊆ G , C = { x ∣ x ∈ G 且 ∀ g ∈ G , x g = g x } C\subseteq G,C=\{x|x\in G且\forall g\in G,xg=gx\} CG,C={xxGgG,xg=gx},称C为G的中心,证明其是一个正规子群

证明:

  1. 首先证明C是G的一个子群

易有 e ∈ C e\in C eC

在群G中有结合律

g ∈ C g\in C gC,则 g − 1 x = x g − 1 g^{-1}x=xg^{-1} g1x=xg1,其逆元也属于C

∀ x 1 , x 2 ∈ C , x 1 x 2 g = x 1 g x 2 = g x 1 x 2 \forall x_1,x_2\in C,x_1x_2g=x_1gx_2=gx_1x_2 x1,x2C,x1x2g=x1gx2=gx1x2,满足封闭性

  1. ∀ c ∈ g C , c = g x ∗ = x ∗ g ∈ C g \forall c\in gC,c=gx^*=x^*g\in Cg cgC,c=gx=xgCg,则 g C ⊆ C g gC\subseteq Cg gCCg,同理 C g ⊆ g C Cg\subseteq gC CggC

​ 所以 C g = g C Cg=gC Cg=gC

习题13.32 求证:两个正规子群的交仍为正规子群

证明:

易知两群的交仍为群,则子群的交仍为子群

设有正规子群 H 1 , H 2 H_1,H_2 H1,H2 H = H 1 ∩ H 2 H=H_1\cap H_2 H=H1H2

∀ g h ∈ g H \forall gh\in gH ghgH g h ∈ H 1 g , g h ∈ H 2 g gh\in H_1g,gh\in H_2g ghH1g,ghH2g

所以 g h ∈ H g gh\in Hg ghHg,则 H H H是正规子群

习题13.36 H H H为G的正规子群,在G上定义二元关系 ρ , x ρ y \rho,x\rho y ρxρy当且仅当 x H = y H xH=yH xH=yH,记为 x ≡ y ( m o d   H ) x\equiv y(mod~H) xy(mod H)​,证明

(1) ρ \rho ρ是等价关系

(2) ρ \rho ρ关于G上的运算相容,即当 x ≡ y ( m o d   H ) , x ′ ≡ y ′ ( m o d   H ) x\equiv y(mod\ H),x'\equiv y'(mod~H) xy(mod H),xy(mod H)时, x x ′ ≡ y y ′ ( m o d   H ) xx'\equiv yy'(mod~H) xxyy(mod H)

(3) x ρ y x\rho y xρy当且仅当 x − 1 y ∈ H x^{-1}y\in H x1yH

(1)

  1. 自反,显然 x H = x H xH=xH xH=xH,则对任意的x, x ρ x x\rho x xρx​成立
  2. 对称, x ρ y x\rho y xρy y ρ x y\rho x yρx
  3. 传递, x ρ y , y ρ z x\rho y,y\rho z xρy,yρz x H = y H = z H xH=yH=zH xH=yH=zH,则 x ρ z x\rho z xρz成立

(2)

x x ′ H = x y ′ H = x H y ′ = y H y ′ = y y ′ H xx'H=xy'H=xHy'=yHy'=yy'H xxH=xyH=xHy=yHy=yyH(H是正规子群)

(3)

必要性:

x H = y H → x h = y h ′ , x − 1 y = h h ′ − 1 ∈ H xH=yH\to xh=yh',x^{-1}y=hh'^{-1}\in H xH=yHxh=yh,x1y=hh1H

充分性:

∀ x h ∈ x H , x ( x − 1 y ) h ′ = y h ′ ∈ y H \forall xh\in xH,x(x^{-1}y)h'=yh'\in yH xhxH,x(x1y)h=yhyH,所以 x H ⊆ y H xH\subseteq yH xHyH,同理…

所以 x H = y H xH=yH xH=yH

习题13.34 证明交换群G关于子群H的商群 G / H G/H G/H是交换群

H g □ H g ′ = H g g ′ = H g ′ g = H g ′ □ H g Hg\Box Hg'=Hgg'=Hg'g=Hg'\Box Hg HgHg=Hgg=Hgg=HgHg

习题13.35* 求商群

(1) R ∗ = R − { 0 } R^*=R-\{0\} R=R{0}乘法群关于 D = { x > 0 ∣ x ∈ R } D=\{x>0|x\in R\} D={x>0∣xR}​子群

(2) [ R ; + ] [R;+] [R;+]关于 [ Z ; + ] [Z;+] [Z;+]​子群

(3) [ C ∗ ; ⋅ ] [C^*;\cdot] [C;]关于 [ D ; ⋅ ] [D;\cdot] [D;]​子群

(4) [ U ; ⋅ ] [U;\cdot] [U;]关于 [ U n ; ⋅ ] [U_n;\cdot] [Un;]子群,其中 U = { a + i b ∣ a , b ∈ R , ∣ a 2 + b 2 ∣ = 1 } U=\{a+ib|a,b\in R,|a^2+b^2|=1\} U={a+iba,bR,a2+b2=1},n是给定的自然数,U的子群: U n = { x ∣ x ∈ U , x n = 1 } U_n=\{x|x\in U,x^n=1\} Un={xxU,xn=1}

(1)

R ∗ / D = { { x > 0 ∣ x ∈ R } , { x < 0 ∣ x ∈ R } } R^*/D=\{\{x>0|x\in R\},\{x<0|x\in R\}\} R/D={{x>0∣xR},{x<0∣xR}}

(2)

R / Z = { [ r ] ∣ r ∈ [ 0 , 1 ) , [ r ] = { x + r ∣ x ∈ Z } } R/Z=\{[r]|r\in [0,1),[r]=\{x+r|x\in Z\}\} R/Z={[r]r[0,1),[r]={x+rxZ}}

(3)

C ∗ / D = { [ e i θ ] ∣ θ ∈ [ 0 , 2 π ) , [ e i θ ] = { ρ e i θ ∣ ρ ∈ D } } C^*/D=\{[e^{i\theta}]|\theta\in [0,2\pi),[e^{i\theta}]=\{\rho e^{i\theta}|\rho\in D\}\} C/D={[eiθ]θ[0,2π),[eiθ]={ρeiθρD}}

(4)

U n = { e 2 π k i n ∣ k = 0 , 1 ,  ⁣ ⋯   , n − 1 } U_n=\{e^{\frac{2\pi ki}n}|k=0,1,\dotsi,n-1\} Un={en2πkik=0,1,,n1}

U = { e i θ ∣ θ ∈ [ 0 , 2 π ) } U=\{e^{i\theta}|\theta\in [0,2\pi)\} U={eiθθ[0,2π)}

U / U n = { [ r ] ∣ r ∈ [ 0 , e 2 π n ) , [ r ] = { r ⋅ e i θ i ∣ θ i ∈ { 0 , 2 π n , 4 π n ,  ⁣ ⋯   } } } U/U_n=\{[r]|r\in[0,e^{\frac{2\pi }n}),[r]=\{r\cdot e^{i\theta_i}|\theta_i\in \{0,\frac{2\pi}n,\frac{4\pi}n,\dotsi\}\}\} U/Un={[r]r[0,en2π),[r]={reiθiθi{0,n2π,n4π,}}}

13.4 群同态和同态基本定理

例13.21(凯莱定理)

任一有限群必定同构于一个同阶的置换群

设G的阶为n,由例13.13知存在集合G上的一个置换群 Σ \Sigma Σ
Σ = { σ g ∣ g ∈ G , σ g : G → G } \Sigma=\{\sigma_g|g\in G,\sigma_g:G\to G\} Σ={σggG,σg:GG}
其中 σ g ( g ′ ) = g g ′ \sigma_g(g')=gg' σg(g)=gg,然后证明 G ≅ Σ G\cong \Sigma GΣ

  1. 因为群中有消去律,知 σ g ≠ σ g ′ \sigma_g\neq\sigma_{g'} σg=σg,当且仅当 g ≠ g ′ g\neq g' g=g,故 σ g \sigma_g σg是一一对应的
  2. φ ( g g ′ ) = σ g g ′ = σ g σ g ′ = φ ( g ) φ ( g ′ ) \varphi(gg')=\sigma_{gg'}=\sigma_g\sigma_{g'}=\varphi(g)\varphi(g') φ(gg)=σgg=σgσg=φ(g)φ(g)

例13.22 同阶的循环群同构

证明:

构造同构映射 φ ( a k ) = b k \varphi(a^k)=b^k φ(ak)=bk

定义(同态映射)

同态映射: ϕ ( g 1 ⋅ g 2 ) = ϕ ( g 1 ) ∗ ϕ ( g 2 ) \phi(g_1\cdot g_2)=\phi(g_1)*\phi(g_2) ϕ(g1g2)=ϕ(g1)ϕ(g2) ϕ \phi ϕ为满射时有同态, ϕ \phi ϕ为双射时有同构

Tips: ϕ ( e ) = e ′ \phi(e)=e' ϕ(e)=e

定义13.18(同态核)

φ \varphi φ是同态映射, K = { x ∈ G ∣ ϕ ( x ) = e ′ } K=\{x\in G|\phi(x)=e'\} K={xGϕ(x)=e},记为 K e r φ Ker\varphi Kerφ K ( φ ) K(\varphi) K(φ)

容易验证K是G的子群:

  1. 同态映射 φ ( k 1 ) , φ ( k 2 ) = e ′ , 则 φ ( k 1 k 2 ) = φ ( k 1 ) φ ( k 2 ) = e ′ \varphi(k_1),\varphi(k_2)=e',则\varphi(k_1k_2)=\varphi(k_1)\varphi(k_2)=e' φ(k1),φ(k2)=e,φ(k1k2)=φ(k1)φ(k2)=e​​,满足封闭性
  2. φ ( g − 1 ) ⋅ φ ( g ) = φ ( e ) = e ′ \varphi(g^{-1})\cdot\varphi(g)=\varphi(e)=e' φ(g1)φ(g)=φ(e)=e,且 φ ( g ) = e ′ \varphi(g)=e' φ(g)=e,则 φ ( g − 1 ) = e ′ \varphi(g^{-1})=e' φ(g1)=e,满足有逆元

K是正规子群:由定理13.18
φ ( g − 1 k g ) = φ ( g − 1 k g ) = φ ( g − 1 ) φ ( k ) φ ( g ) = φ ( g − 1 g ) = φ ( e ) \varphi(g^{-1}kg)=\varphi(g^{-1}kg)=\varphi(g^{-1})\varphi(k)\varphi(g)=\varphi(g^{-1}g)=\varphi(e) φ(g1kg)=φ(g1kg)=φ(g1)φ(k)φ(g)=φ(g1g)=φ(e)
根据同态映射的性质, φ ( g ) φ ( e ) = φ ( g ) \varphi(g)\varphi(e)=\varphi(g) φ(g)φ(e)=φ(g),可以说明 φ ( e ) = e ′ \varphi(e)=e' φ(e)=e

定理 13.19:群G自然同态于它的任一商群G/H

证明:构造映射 f ( g ) = g H f(g)=gH f(g)=gH,显然有满射

f ( g g ′ ) = g g ′ H = g H □ g ′ H = f ( g ) □ f ( g ′ ) f(gg')=gg'H=gH\Box g'H=f(g)\Box f(g') f(gg)=ggH=gHgH=f(g)f(g),所以f是同态映射

这个同态又称为自然同态

定理13.20(群同态基本定理)

当同态映射 φ : G → G ′ \varphi:G\to G' φ:GG为满同态映射时,有 G / K ≅ G ′ G/K\cong G' G/KG(一般形式为 G / K ≅ φ ( g ) G/K\cong \varphi(g) G/Kφ(g))​

证明:

构造映射 ψ ( g K ) = φ ( g ) \psi(gK)=\varphi(g) ψ(gK)=φ(g) ψ \psi ψ​是同态映射,且是双射

  1. 证明是映射:设 x K = y K , y = x k 1 k 2 − 1 = x k ′ xK=yK,y=xk_1k_2^{-1}=xk' xK=yK,y=xk1k21=xk
    ψ ( y K ) = ψ ( x k ′ K ) = φ ( x k ′ ) = φ ( x ) φ ( k ′ ) = φ ( x ) = ψ ( x K ) \psi(yK)=\psi(xk'K)=\varphi(xk')=\varphi(x)\varphi(k')=\varphi(x)=\psi(xK) ψ(yK)=ψ(xkK)=φ(xk)=φ(x)φ(k)=φ(x)=ψ(xK)

  2. 证明内射:设 x K ≠ y K , x − 1 y ∉ K xK\neq yK,x^{-1}y\not\in K xK=yK,x1yK
    φ ( x − 1 y ) ≠ e ′ φ ( x − 1 ) φ ( y ) ≠ e ′ φ ( x ) ≠ φ ( y ) ψ ( x K ) ≠ ψ ( y K ) \varphi(x^{-1}y)\neq e'\\ \varphi(x^{-1})\varphi(y)\neq e'\\ \varphi(x)\neq\varphi(y)\\ \psi(xK)\neq \psi(yK) φ(x1y)=eφ(x1)φ(y)=eφ(x)=φ(y)ψ(xK)=ψ(yK)
    说明G’中每个元素只对应一个象源

  3. 证明满射: φ ( g ) = ψ ( g K ) \varphi(g)=\psi(gK) φ(g)=ψ(gK)

  4. 证明同态映射: ψ ( x K □ y K ) = ψ ( x y K ) = φ ( x y ) = φ ( x ) φ ( y ) = ψ ( x K ) ψ ( y K ) \psi(xK\Box yK)=\psi(xyK)=\varphi(xy)=\varphi(x)\varphi(y)=\psi(xK)\psi(yK) ψ(xKyK)=ψ(xyK)=φ(xy)=φ(x)φ(y)=ψ(xK)ψ(yK)

由定理13.19,定理13.20以及习题13.36可以画出如下的群同态关系图

img_v3_02a5_20a1986d-dd95-4b66-83d1-5cdc6987cedg

第13章习题四

习题13.37 证明 ϕ ( G ) ⊆ G ′ \phi(G)\subseteq G' ϕ(G)G​是G‘的子群,其中 ϕ : G → G ′ \phi:G\to G' ϕ:GG为同态映射

证明:由子群的等价性定义

  1. 封闭性: ϕ ( g ) ϕ ( g ′ ) = ϕ ( g g ′ ) ∈ ϕ ( G ) \phi(g)\phi(g')=\phi(gg')\in \phi(G) ϕ(g)ϕ(g)=ϕ(gg)ϕ(G)
  2. 有逆元: ϕ ( g ) ⋅ ϕ ( g − 1 ) = ϕ ( e ) = e ′ \phi(g)\cdot\phi(g^{-1})=\phi(e)=e' ϕ(g)ϕ(g1)=ϕ(e)=e

习题13.40* 证明
(1) [ D ; ⋅ ] ≅ [ R ; + ] , D = { x > 0 ∣ x ∈ R } [D;\cdot]\cong [R;+],D=\{x>0|x\in R\} [D;][R;+],D={x>0∣xR}

(2) [ Q + ; ⋅ ] ≇ [ Q ; + ] [Q_+;\cdot]\not\cong[Q;+] [Q+;][Q;+],其中 Q + = { x > 0 ∣ x ∈ Q } Q_+=\{x>0|x\in Q\} Q+={x>0∣xQ}

(3) Z 4 Z_4 Z4不同构于 K 4 K_4 K4​(克莱茵四元群)

(4)若G与G‘同态,G与G’同构当且仅当 K = { e } K=\{e\} K={e}

证明:

(1)

构造映射 ϕ ( r ) = e r . r ∈ R \phi(r)=e^r.r\in R ϕ(r)=er.rR,显然双射

ϕ ( r 1 + r 2 ) = e r 1 + r 2 = e r 1 e r 2 = ϕ ( r 1 ) ϕ ( r 2 ) \phi(r_1+r_2)=e^{r_1+r_2}=e^{r_1}e^{r_2}=\phi(r_1)\phi(r_2) ϕ(r1+r2)=er1+r2=er1er2=ϕ(r1)ϕ(r2)

(2)

设有同构映射 ϕ : Q → Q + , ϕ ( q ) = q + \phi:Q\to Q_+,\phi(q)=q_+ ϕ:QQ+,ϕ(q)=q+

ϕ ( y ) = 2 \phi(y)=2 ϕ(y)=2 ϕ ( y / 2 + y / 2 ) = ϕ ( y / 2 ) 2 = 2 , ϕ ( y / 2 ) = 2 \phi(y/2+y/2)=\phi(y/2)^2=2,\phi(y/2)=\sqrt2 ϕ(y/2+y/2)=ϕ(y/2)2=2,ϕ(y/2)=2 ​,矛盾

(3)

设有同构映射 ϕ : Z 4 → K 4 \phi:Z_4\to K_4 ϕ:Z4K4

ϕ ( [ 1 ] ⊗ [ 1 ] ) = ϕ ( [ 1 ] ) ϕ ( [ 1 ] ) = e = ϕ ( [ 0 ] ) \phi([1]\otimes[1])=\phi([1])\phi([1])=e=\phi([0]) ϕ([1][1])=ϕ([1])ϕ([1])=e=ϕ([0]),与 ϕ ( [ 1 ] ⊗ [ 1 ] ) = ϕ ( [ 1 ] ) \phi([1]\otimes[1])=\phi([1]) ϕ([1][1])=ϕ([1])矛盾

(4)

G与G‘同态,说明 ϕ : G → G ′ \phi:G\to G' ϕ:GG为满射

由群同态基本定理有 G / K ≅ G ′ G/K\cong G' G/KG

充分性:当K={e},G/K=G

必要性:当 K ≠ { e } K\neq\{e\} K={e},显然|K| >1,|G/K|< |G|,则 G / K ≠ G G/K\neq G G/K=G

习题13.41* 证明:( C ∗ , D , U , U n C^*,D,U,U_n C,D,U,Un​如习题13.35所示)

(1) R / Z ≅ U R/Z\cong U R/ZU

(2) C ∗ / D ≅ U C^*/D\cong U C/DU

(3) C ∗ / U ≅ D C^*/U\cong D C/UD

(4) U / U n ≅ U U/U_n\cong U U/UnU

(1)

U = { a + i b ∣ a , b ∈ R , ∣ a 2 + b 2 ∣ = 1 } U=\{a+ib|a,b\in R,|a^2+b^2|=1\} U={a+iba,bR,a2+b2=1}

同态映射 ϕ ( r ) = e 2 π r i \phi(r)=e^{2\pi ri} ϕ(r)=e2πri,同态核 K ( ϕ ) = { e 2 π r i = 1 ∣ r ∈ R } = { r ∣ r =  ⁣ ⋯   , − 1 , 0 , 1 ,  ⁣ ⋯   } = Z K(\phi)=\{e^{2\pi ri}=1|r\in R\}=\{r|r=\dotsi,-1,0,1,\dotsi\}=Z K(ϕ)={e2πri=1∣rR}={rr=,1,0,1,}=Z

(2)

同态映射 ϕ ( ρ e i θ ) = e i θ \phi(\rho e^{i\theta})=e^{i\theta} ϕ(ρeiθ)=eiθ,其中 ρ > 0 \rho>0 ρ>0

K ( ϕ ) = { ϕ ( ρ e i θ ) = e i θ = 1 } = { ρ e i θ ∣ θ = 2 k π , ρ > 0 } K(\phi)=\{\phi(\rho e^{i\theta})=e^{i\theta}=1\}=\{\rho e^{i\theta}|\theta=2k\pi,\rho>0\} K(ϕ)={ϕ(ρeiθ)=eiθ=1}={ρeiθθ=2,ρ>0}

思路:找到同态核如何拓展右式到左式,以拓展方式作为映射

(3)

同态映射 ϕ ( ρ e i θ ) = ρ \phi(\rho e^{i\theta})=\rho ϕ(ρeiθ)=ρ

K ( ϕ ) = { ϕ ( ρ e i θ ) = 1 } = { ρ e i θ ∣ ρ = 1 , θ ∈ ( 0 , 2 π ) } K(\phi)=\{\phi(\rho e^{i\theta})=1\}=\{\rho e^{i\theta}|\rho=1,\theta\in (0,2\pi)\} K(ϕ)={ϕ(ρeiθ)=1}={ρeiθρ=1,θ(0,2π)}

(4)

U / U n = { [ e i θ ] ∣ θ ∈ [ 0 , 2 π n ) } U/U_n=\{[e^{i\theta}]|\theta\in [0,\frac{2\pi}n)\} U/Un={[eiθ]θ[0,n2π)}

ϕ ( [ e i θ ] ) = e i n θ \phi([e^{i\theta}])=e^{in\theta} ϕ([eiθ])=einθ,显然一一对应

或者: ϕ ( x ) = x n , k e r ϕ = { x n = 1 ∣ x ∈ U } = U n \phi(x)=x^n,ker\phi=\{x^n=1|x\in U\}=U_n ϕ(x)=xn,kerϕ={xn=1∣xU}=Un

(5)

ϕ ( ρ x ) = ρ x n \phi(\rho x)=\rho x^n ϕ(ρx)=ρxn

k e r ϕ = { ρ x n ∣ ρ = 1 , x n = 1 } = U n ker\phi=\{\rho x^n|\rho=1,x^n=1\}=U_n kerϕ={ρxnρ=1,xn=1}=Un

习题13.42 证明 [ Z 2 × Z 2 ; + ] [Z_2\times Z_2;+] [Z2×Z2;+]同构于 K 4 K_4 K4,其中运算+定义为各分量模2的加

作映射 ( 0 , 0 ) − > e , ( 0 , 1 ) − > a , ( 1 , 0 ) − > b , ( 1 , 1 ) − > r (0,0)->e,(0,1)->a,(1,0)->b,(1,1)->r (0,0)>e,(0,1)>a,(1,0)>b,(1,1)>r

显然是双射

经过分析知映射满足同态映射的条件

image-20240421111641056

第13章习题五

1 群G是阶偶数的有限群,则G中阶2的元素个数一定是奇数

阶1:0

阶大于2:元素成对存在,a的阶为p,a-1也是阶大于2的,且 a ≠ a − 1 a\neq a^{-1} a=a1,否则 a a − 1 = e aa^{-1}= e aa1=e不成立;且 a p − 1 a^{p-1} ap1与p互素

阶等于2:奇数个

2 设G是rs阶循环群,(r,s)=1,H1和H2分别为G的r阶和s阶子群,证明 G = H 1 H 2 = { h 1 h 2 ∣ h 1 ∈ H 1 , h 2 ∈ H 2 } G=H_1H_2=\{h1h2|h1\in H1,h2\in H2\} G=H1H2={h1h2∣h1H1,h2H2}

H 1 = { a 0 , a 1 ,  ⁣ ⋯   , a r − 1 } , H 2 = { b 0 , b 1 ,  ⁣ ⋯   , b s − 1 } H_1=\{a^0,a^1,\dotsi,a^{r-1}\},H_2=\{b^0,b^1,\dotsi,b^{s-1}\} H1={a0,a1,,ar1},H2={b0,b1,,bs1}

习题13.20,ab的阶为nm

{ a b , ( a b ) 1 ,  ⁣ ⋯   , ( a b ) n m − 1 } = { h 1 h 2 ∣ h 1 ∈ H 1 , h 2 ∈ H 2 } \{ab,(ab)^1,\dotsi,(ab)^{nm-1}\}=\{h1h2|h1\in H1,h2\in H2\} {ab,(ab)1,,(ab)nm1}={h1h2∣h1H1,h2H2}​,因为互不相同

x=a^k=a^k(mr+ns)=a^kmr a^kns

由于 a b ∈ G , ∴   G = H 1 H 2 ab\in G,\therefore\ G=H_1H_2 abG G=H1H2

3 [H1;·]和[H2;·]是群[G;·]的子群,[H1 ∪ H2;·] 是否是群[G;·]的子群?说明理由

显然不是,不满足封闭性

4 设H1,H2是G的子群,证明H1H2是G的子群当且仅当H1H2=H2H1,其中 H 1 H 2 = { h 1 h 2 ∣ h 1 ∈ H 1 , h 2 ∈ H 2 } , H 2 H 1 = { h 2 h 1 ∣ h 1 ∈ H 1 , h 2 ∈ H 2 } H1H2=\{h_1h_2|h_1\in H1,h_2\in H2\}, H2H1=\{h_2h_1|h_1\in H1,h_2\in H2\} H1H2={h1h2h1H1,h2H2},H2H1={h2h1h1H1,h2H2}

充分性:

首先满足封闭性,由定义任意元素相乘在H1H2中

其次满足有逆元, h 1 h 2 = h 2 h 1 → ( h 1 h 2 ) ( h 1 − 1 h 2 − 1 ) h_1h_2=h_2h_1\to (h_1h_2)(h_1^{-1}h_2^{-1}) h1h2=h2h1(h1h2)(h11h21)

必要性:

当H1H2是为G的子群

( h 2 h 1 ) ( h 1 − 1 h 2 − 1 ) = e , h 1 − 1 h 2 − 1 ∈ H 1 H 2 (h_2h_1)(h_1^{-1}h_2^{-1})=e,h_1^{-1}h_2^{-1}\in H_1H_2 (h2h1)(h11h21)=e,h11h21H1H2,所以

( h 1 − 1 h 2 − 1 ) − 1 = h 2 h 1 ∈ H 1 H 2 (h_1^{-1}h_2^{-1})^{-1}=h_2h_1\in H_1H_2 (h11h21)1=h2h1H1H2,说明 H 2 H 1 ⊆ H 1 H 2 H_2H_1\subseteq H_1H_2 H2H1H1H2,同理有另一侧

最后有H1H2=H2H1

5 ϕ \phi ϕ为群中映射 [ G ; ∗ ] → [ G ′ ; ∘ ] [G;*]\to[G';\circ] [G;][G;],为一一对应当且仅当 K ( ϕ ) = { e G } K(\phi)=\{e_G\} K(ϕ)={eG}(见前面的习题)

必要性:

显然K只能包含一个元素,否则不满足双射

ϕ ( a ) = ϕ ( e G ∗ a ) = ϕ ( e G ) ϕ ( a ) \phi(a)=\phi(e_G*a)=\phi(e_G)\phi(a) ϕ(a)=ϕ(eGa)=ϕ(eG)ϕ(a)

显然 ϕ ( e G ) \phi(e_G) ϕ(eG)​是G’中的单位元

充分性:

假设不是内射

ϕ ( x ) = ϕ ( y ) , ϕ ( e ) = ϕ ( x x − 1 ) = ϕ ( x ) ϕ ( y ) \phi(x)=\phi(y),\phi(e)=\phi(xx^{-1})=\phi(x)\phi(y) ϕ(x)=ϕ(y),ϕ(e)=ϕ(xx1)=ϕ(x)ϕ(y),矛盾

6 ϕ \phi ϕ是群G到G’的同态映射,证明:

(1) 若H是G的子群,则 ϕ ( H ) \phi(H) ϕ(H)也是G’的子群

(2) 若H是正规子群, ϕ ( H ) \phi(H) ϕ(H)也是正规子群

(1)

封闭性: ϕ ( h 1 ) ϕ ( h 2 ) = ϕ ( h 1 h 2 ) ∈ ϕ ( H ) \phi(h_1)\phi(h_2)=\phi(h_1h_2)\in \phi(H) ϕ(h1)ϕ(h2)=ϕ(h1h2)ϕ(H)

有逆元: ϕ ( h ) \phi(h) ϕ(h)的逆元是 ϕ ( h − 1 ) \phi(h^{-1}) ϕ(h1)

(2)

g h g − 1 ∈ H ghg^{-1}\in H ghg1H ϕ ( g h g − 1 ) = ϕ ( g ) ϕ ( h ) ϕ ( g − 1 ) = ϕ ( g ) ϕ ( h ) ϕ ( g ) − 1 \phi(ghg^{-1})=\phi(g)\phi(h)\phi(g^{-1})=\phi(g)\phi(h)\phi(g)^{-1} ϕ(ghg1)=ϕ(g)ϕ(h)ϕ(g1)=ϕ(g)ϕ(h)ϕ(g)1

其中 ϕ ( g ) ∈ G ′ , ϕ ( h ) ∈ ϕ ( H ) \phi(g)\in G',\phi(h)\in \phi(H) ϕ(g)G,ϕ(h)ϕ(H)

所以 ϕ ( H ) \phi(H) ϕ(H)也是正规子群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值