目录
13.3 子群,正规子群和商群
定义13.12(子群)
H ⊆ G H\subseteq G H⊆G,且H是群
定理(子群的等价性定义)*
定理13.14:H是G的子群,当且仅当H有封闭性和有逆元
证明:
必要性:H是群
充分性:
由封闭性和有逆元说明单位元 e ∈ H e\in H e∈H
结合律,因为 H ⊆ G H\subseteq G H⊆G
定理13.15 H是G的子群,当且仅当对任意的 a , b ∈ H , a b − 1 ∈ H a,b\in H,ab^{-1}\in H a,b∈H,ab−1∈H
证明:
- 在H上满足结合律
- 取b=a,则 a a − 1 = e ∈ H aa^{-1}=e\in H aa−1=e∈H
- 取a=e,则每个元都有逆元
- 对任意的a,b,由(3)知 b − 1 ∈ H b^{-1}\in H b−1∈H,所以满足封闭性
推论13.6 当H为G的子群时,H的单位元就是G的单位元, a a a在H中的逆元就是它在G中的逆元
定理13.16:H为有限群,则H是G的子群当且仅当H有封闭性
证明:
必要性:显然
充分性:
由于H是有限集,任意 h k ∈ H h^k\in H hk∈H,由鸽笼原理有
a i = a j a^i=a^j ai=aj
所以 a i − j = e ∈ H a^{i-j}=e\in H ai−j=e∈H,由单位元证明有逆元,分类讨论
- i − j > 1 i-j>1 i−j>1 , a ( a i − j − 1 ) = a i − j = e a(a^{i-j-1})=a^{i-j}=e a(ai−j−1)=ai−j=e,所以a的逆是ai-j-1
- i − j ≠ 0 i-j\neq0 i−j=0,因为取i,j不同
- i − j < 0 i-j<0 i−j<0时, a − 1 a^{-1} a−1是 a j − i − 1 a^{j-i-1} aj−i−1
- i − j = 1 i-j=1 i−j=1时, a = e a=e a=e
例13.16
找出
S
3
S_3
S3的所有子群
H 1 = { ( 1 ) , ( 2 3 ) } H 2 = { ( 1 ) , ( 1 2 ) } H 3 = { ( 1 ) , ( 1 3 ) } H 4 = { ( 1 ) , ( 1 2 3 ) , ( 1 3 2 ) } \begin{aligned} &H_1=\{(1),(2~~3)\}\\&H_2=\{(1),(1~~2)\}\\&H_3=\{(1),(1~~3)\}\\ &H_4=\{(1),(1~~2~~3),(1~~3~~2)\} \end{aligned} H1={(1),(2 3)}H2={(1),(1 2)}H3={(1),(1 3)}H4={(1),(1 2 3),(1 3 2)}
其中 H 4 = A 3 H_4=A_3 H4=A3(定理:n次交待群是n次对称群的其中一个子群)
例13.17
找出
[
Z
12
;
⊕
]
[Z_{12};\oplus]
[Z12;⊕]的所有子群
H 1 = { [ 0 ] , [ 2 ] , [ 4 ] , [ 6 ] , [ 8 ] , [ 10 ] } H 2 = { [ 0 ] , [ 4 ] , [ 8 ] } H 3 = { [ 0 ] , [ 3 ] , [ 6 ] , [ 9 ] } H 4 = { [ 0 ] , [ 6 ] } \begin{aligned} &H_1=\{[0],[2],[4],[6],[8],[10]\}\\ &H_2=\{[0],[4],[8]\}\\ &H_3=\{[0],[3],[6],[9]\}\\ &H_4=\{[0],[6]\} \end{aligned} H1={[0],[2],[4],[6],[8],[10]}H2={[0],[4],[8]}H3={[0],[3],[6],[9]}H4={[0],[6]}
这四个子群都是循环群
定义13.13(陪集)
设H是G的子群,取G中一固定元素g,用g与H中的每个元素做乘法,将其结果组成一个集合
g
H
=
{
g
h
∣
h
∈
H
}
gH=\{gh|h\in H\}
gH={gh∣h∈H}
称gH是H的左陪集,同理可定义H的右陪集Hg(当g=e时左右陪集相等,当G是交换群时所有左右陪集相等)
由定义知 e ∈ G e\in G e∈G,所以H自身也是一个陪集。在一般情况下 H g ≠ g H Hg\neq gH Hg=gH
例13.18
以
S
3
S_3
S3为例,给出关于
H
1
,
H
4
H_1,H_4
H1,H4的左右陪集
(1)
e H 1 = σ 1 H 1 = { ( 1 ) , ( 2 3 ) } σ 2 H 1 = σ 5 H 1 = { ( 1 2 ) ( 1 2 3 ) } σ 3 H 1 = σ 4 H 1 = { ( 1 3 ) ( 1 3 2 ) } H 1 e = H 1 σ 1 = { ( 1 ) , ( 2 3 ) } H 1 σ 2 = H 1 σ 4 = { ( 1 2 ) ( 1 2 3 ) } H 1 σ 3 = H 1 σ 5 = { ( 1 3 ) ( 1 3 2 ) } eH_1=\sigma_1H_1=\{(1),(2~~3)\}\\ \sigma_2H_1=\sigma_5H_1=\{(1~~2)(1~~2~~3)\}\\ \sigma_3H_1=\sigma_4H_1=\{(1~~3)(1~~3~~2)\}\\ H_1e=H_1\sigma_1=\{(1),(2~~3)\}\\ H_1\sigma_2=H_1\sigma_4=\{(1~~2)(1~~2~~3)\}\\ H_1\sigma_3=H_1\sigma_5=\{(1~~3)(1~~3~~2)\}\\ eH1=σ1H1={(1),(2 3)}σ2H1=σ5H1={(1 2)(1 2 3)}σ3H1=σ4H1={(1 3)(1 3 2)}H1e=H1σ1={(1),(2 3)}H1σ2=H1σ4={(1 2)(1 2 3)}H1σ3=H1σ5={(1 3)(1 3 2)}
可见 H 1 H_1 H1有3个左(右)陪集,但他们并不相同(2)
e H 4 = { e , σ 4 , σ 5 } σ 1 H 4 = { e , σ 4 , σ 5 } = H 4 σ 1 eH_4=\{e,\sigma_4,\sigma_5\}\\ \sigma_1H_4=\{e,\sigma_4,\sigma_5\}=H_4\sigma_1 eH4={e,σ4,σ5}σ1H4={e,σ4,σ5}=H4σ1
H 4 H_4 H4的左右陪集是相等的
例13.19
一个关于无限群的例子,
[
Z
;
+
]
[Z;+]
[Z;+]是关于
[
Q
;
+
]
[Q;+]
[Q;+]的一个子群,Z在Q中的陪集形如
a Z = { a + k ∣ k ∈ Z } = { k + a ∣ k ∈ Z } = Z a aZ=\{a+k|k\in Z\}=\{k+a|k\in Z\}=Za aZ={a+k∣k∈Z}={k+a∣k∈Z}=Za
左右陪集相等,因为群是可交换的
由于Z是无限集,可知它的陪集也是无限的
定理(陪集的性质)
引理13.1:当H为有限子群,那么 ∣ g H ∣ = ∣ H ∣ , ∣ H g ∣ = ∣ H ∣ |gH|=|H|,|Hg|=|H| ∣gH∣=∣H∣,∣Hg∣=∣H∣
证明:
(仅有限阶的情况,可推广到无限阶)
构造双射 ϕ ( h ) = h g : H → H g \phi(h)=hg:H\to Hg ϕ(h)=hg:H→Hg
引理13.2:$Hg_1=Hg_2或Hg_1\cap Hg_2=\varnothing $
证明:
假设存在某个 g ∈ H g 1 ∩ H g 2 g\in Hg_1\cap Hg_2 g∈Hg1∩Hg2,于是存在
h 1 g 1 = h 2 g 2 h_1g_1=h_2g_2 h1g1=h2g2
由上式可得 g 1 = h 1 − 1 h 2 g 2 g_1=h_1^{-1}h_2g_2 g1=h1−1h2g2∀ h ∈ H , ( h g 1 ∈ H g 1 ) = h h 1 − 1 h 2 g 2 = h ′ g 2 ∈ H g 2 \forall h\in H,(hg_1\in Hg_1)=hh_1^{-1}h_2g_2=h'g_2\in Hg_2 ∀h∈H,(hg1∈Hg1)=hh1−1h2g2=h′g2∈Hg2
于是 H 1 ⊆ H 2 H_1\subseteq H_2 H1⊆H2,同理 H 2 ⊆ H 1 H_2\subseteq H_1 H2⊆H1
则 H 1 = H 2 H_1=H_2 H1=H2
推论13.7:子群H的所有陪集构成G的划分
证明:
G = ⋃ g = G H g G=\bigcup_{g=G}Hg G=g=G⋃Hg
其中当 H g ≠ H g ′ Hg\neq Hg' Hg=Hg′时, H g ∩ H g ′ = ∅ Hg\cap Hg'=\varnothing Hg∩Hg′=∅
定义13.14(指数)
关于子群 H H H的所有不同左(右)陪集数
定理13.17(拉格朗日定理)
子群 H H H的阶可整除有限群 G G G的阶,其商是 H H H在 G G G中的指数
证明:
G = ⋃ g ∈ G H g = ∑ g ∈ G ∣ H g ∣ = k ∣ H ∣ G=\bigcup_{g\in G}Hg=\sum_{g\in G}|Hg|=k|H| G=g∈G⋃Hg=g∈G∑∣Hg∣=k∣H∣
故 ∣ G ∣ / ∣ H ∣ = k |G|/|H|=k ∣G∣/∣H∣=k
推论13.8:有限群 G G G的阶为素数p,则 G G G是循环群
证明:
设 H H H是 g g g生成的子群,要求 g 1 = g ≠ e g^1=g\neq e g1=g=e
H = ( g ) = { g 0 = e , g 1 , … , g k − 1 } 又 ∣ H ∣ 整除 ∣ G ∣ , ∴ ∣ H ∣ = p H=(g)=\{g^0=e,g^1,\dots,g^{k-1}\}\\ 又|H|整除|G|,\therefore |H|=p H=(g)={g0=e,g1,…,gk−1}又∣H∣整除∣G∣,∴∣H∣=p
即 ( g ) = G (g)=G (g)=G,G由g生成定理:G中任何一个元素(除e)都能生成G
定义(正规子群)
∀ g , g H = H g \forall g,gH=Hg ∀g,gH=Hg
称 H H H是 G G G的正规子群
Abel群一定是正规的,非Abel群也可能是正规的
定理13.18(正规子群的等价性定义)
H是正规的,当且仅当 g − 1 h g ∈ H g^{-1}hg\in H g−1hg∈H
证明:
必要性:因为H是正规的,Hg=gH,则对 ∀ h , g \forall h,g ∀h,g有 g h ′ = h g gh'=hg gh′=hg
所以存在 h ′ = g − 1 h g h'=g^{-1}hg h′=g−1hg
充分性:任取 a h ∈ a H ah\in aH ah∈aH, a h = ( a h a − 1 ) a = h ′ a ∈ H a ah=(aha^{-1})a=h'a\in Ha ah=(aha−1)a=h′a∈Ha,所以 a H = H a aH=Ha aH=Ha, H H H是正规的
定义(商集合)
G是群,H是它的正规子群, G / H = { H g ∣ g ∈ G } G/H=\{Hg|g\in G\} G/H={Hg∣g∈G},即 G G G所有不同的陪集,称为 G G G关于 H H H的商集合
定义(G/H上的二元关系 □ \Box □)
H g □ H g ′ = H g g ′ Hg\Box Hg'=Hgg' Hg□Hg′=Hgg′
引理13.3 如上定义的 G / H G/H G/H上的二元关系 □ \Box □与陪集的代表元选取无关
H上的代表元数量等于H的阶数
任取 x ′ ∈ H x , y ′ ∈ H y x'\in Hx,y'\in Hy x′∈Hx,y′∈Hy,则 x ′ y ′ = x h 1 ′ y h 2 ′ = x y h 1 ′ h 2 ′ ∈ H x y x'y'=xh_1'yh_2'=xyh_1'h_2'\in Hxy x′y′=xh1′yh2′=xyh1′h2′∈Hxy,类似有 x y ∈ H x ′ y ′ xy\in Hx'y' xy∈Hx′y′
由引理13.2,xy是 H x ′ y ′ Hx'y' Hx′y′和 H x y Hxy Hxy中的公共元素
故 H x □ H y = H x y = H x ′ y ′ = H x ′ □ H y ′ Hx\Box Hy=Hxy=Hx'y'=Hx'\Box Hy' Hx□Hy=Hxy=Hx′y′=Hx′□Hy′,其中x’和x分别代表了不同的代表元
引理13.4 [ G / H ; □ ] [G/H;\Box ] [G/H;□]是群
证明:
- □ \Box □满足结合律
- H e He He是单位元
- H x − 1 Hx^{-1} Hx−1是逆元
定义13.17(商群)
[ G / H ; □ ] [G/H;\Box] [G/H;□]是群,称为 G G G关于 H H H的商群
第13章习题三
习题13.29*
证明:指数为2的子群一定是正规的
证明:
在子群 H H H的陪集有且仅有2个,记为 H 1 H_1 H1和 H 2 H_2 H2,因为H是子群, e ∈ H e\in H e∈H
如果 H H H非正规的,存在g使得 g H = H 1 , H g = H 2 gH=H_1,Hg=H_2 gH=H1,Hg=H2
显然 g ∈ H 1 ∩ H 2 g\in H_1 \cap H_2 g∈H1∩H2,则 H 1 = H 2 H_1=H_2 H1=H2矛盾
说明H一定是正规的
习题13.30
G为群,
C
⊆
G
,
C
=
{
x
∣
x
∈
G
且
∀
g
∈
G
,
x
g
=
g
x
}
C\subseteq G,C=\{x|x\in G且\forall g\in G,xg=gx\}
C⊆G,C={x∣x∈G且∀g∈G,xg=gx},称C为G的中心,证明其是一个正规子群
证明:
- 首先证明C是G的一个子群
易有 e ∈ C e\in C e∈C
在群G中有结合律
若 g ∈ C g\in C g∈C,则 g − 1 x = x g − 1 g^{-1}x=xg^{-1} g−1x=xg−1,其逆元也属于C
∀ x 1 , x 2 ∈ C , x 1 x 2 g = x 1 g x 2 = g x 1 x 2 \forall x_1,x_2\in C,x_1x_2g=x_1gx_2=gx_1x_2 ∀x1,x2∈C,x1x2g=x1gx2=gx1x2,满足封闭性
- ∀ c ∈ g C , c = g x ∗ = x ∗ g ∈ C g \forall c\in gC,c=gx^*=x^*g\in Cg ∀c∈gC,c=gx∗=x∗g∈Cg,则 g C ⊆ C g gC\subseteq Cg gC⊆Cg,同理 C g ⊆ g C Cg\subseteq gC Cg⊆gC
所以 C g = g C Cg=gC Cg=gC
习题13.32
求证:两个正规子群的交仍为正规子群
证明:
易知两群的交仍为群,则子群的交仍为子群
设有正规子群 H 1 , H 2 H_1,H_2 H1,H2, H = H 1 ∩ H 2 H=H_1\cap H_2 H=H1∩H2
∀ g h ∈ g H \forall gh\in gH ∀gh∈gH, g h ∈ H 1 g , g h ∈ H 2 g gh\in H_1g,gh\in H_2g gh∈H1g,gh∈H2g
所以 g h ∈ H g gh\in Hg gh∈Hg,则 H H H是正规子群
习题13.36
H
H
H为G的正规子群,在G上定义二元关系
ρ
,
x
ρ
y
\rho,x\rho y
ρ,xρy当且仅当
x
H
=
y
H
xH=yH
xH=yH,记为
x
≡
y
(
m
o
d
H
)
x\equiv y(mod~H)
x≡y(mod H),证明
(1) ρ \rho ρ是等价关系
(2) ρ \rho ρ关于G上的运算相容,即当 x ≡ y ( m o d H ) , x ′ ≡ y ′ ( m o d H ) x\equiv y(mod\ H),x'\equiv y'(mod~H) x≡y(mod H),x′≡y′(mod H)时, x x ′ ≡ y y ′ ( m o d H ) xx'\equiv yy'(mod~H) xx′≡yy′(mod H)
(3) x ρ y x\rho y xρy当且仅当 x − 1 y ∈ H x^{-1}y\in H x−1y∈H
(1)
- 自反,显然 x H = x H xH=xH xH=xH,则对任意的x, x ρ x x\rho x xρx成立
- 对称, x ρ y x\rho y xρy则 y ρ x y\rho x yρx
- 传递, x ρ y , y ρ z x\rho y,y\rho z xρy,yρz则 x H = y H = z H xH=yH=zH xH=yH=zH,则 x ρ z x\rho z xρz成立
(2)
x x ′ H = x y ′ H = x H y ′ = y H y ′ = y y ′ H xx'H=xy'H=xHy'=yHy'=yy'H xx′H=xy′H=xHy′=yHy′=yy′H(H是正规子群)
(3)
必要性:
x H = y H → x h = y h ′ , x − 1 y = h h ′ − 1 ∈ H xH=yH\to xh=yh',x^{-1}y=hh'^{-1}\in H xH=yH→xh=yh′,x−1y=hh′−1∈H
充分性:
∀ x h ∈ x H , x ( x − 1 y ) h ′ = y h ′ ∈ y H \forall xh\in xH,x(x^{-1}y)h'=yh'\in yH ∀xh∈xH,x(x−1y)h′=yh′∈yH,所以 x H ⊆ y H xH\subseteq yH xH⊆yH,同理…
所以 x H = y H xH=yH xH=yH
习题13.34
证明交换群G关于子群H的商群
G
/
H
G/H
G/H是交换群
H g □ H g ′ = H g g ′ = H g ′ g = H g ′ □ H g Hg\Box Hg'=Hgg'=Hg'g=Hg'\Box Hg Hg□Hg′=Hgg′=Hg′g=Hg′□Hg
习题13.35*
求商群
(1) R ∗ = R − { 0 } R^*=R-\{0\} R∗=R−{0}乘法群关于 D = { x > 0 ∣ x ∈ R } D=\{x>0|x\in R\} D={x>0∣x∈R}子群
(2) [ R ; + ] [R;+] [R;+]关于 [ Z ; + ] [Z;+] [Z;+]子群
(3) [ C ∗ ; ⋅ ] [C^*;\cdot] [C∗;⋅]关于 [ D ; ⋅ ] [D;\cdot] [D;⋅]子群
(4) [ U ; ⋅ ] [U;\cdot] [U;⋅]关于 [ U n ; ⋅ ] [U_n;\cdot] [Un;⋅]子群,其中 U = { a + i b ∣ a , b ∈ R , ∣ a 2 + b 2 ∣ = 1 } U=\{a+ib|a,b\in R,|a^2+b^2|=1\} U={a+ib∣a,b∈R,∣a2+b2∣=1},n是给定的自然数,U的子群: U n = { x ∣ x ∈ U , x n = 1 } U_n=\{x|x\in U,x^n=1\} Un={x∣x∈U,xn=1}
(1)
R ∗ / D = { { x > 0 ∣ x ∈ R } , { x < 0 ∣ x ∈ R } } R^*/D=\{\{x>0|x\in R\},\{x<0|x\in R\}\} R∗/D={{x>0∣x∈R},{x<0∣x∈R}}
(2)
R / Z = { [ r ] ∣ r ∈ [ 0 , 1 ) , [ r ] = { x + r ∣ x ∈ Z } } R/Z=\{[r]|r\in [0,1),[r]=\{x+r|x\in Z\}\} R/Z={[r]∣r∈[0,1),[r]={x+r∣x∈Z}}
(3)
C ∗ / D = { [ e i θ ] ∣ θ ∈ [ 0 , 2 π ) , [ e i θ ] = { ρ e i θ ∣ ρ ∈ D } } C^*/D=\{[e^{i\theta}]|\theta\in [0,2\pi),[e^{i\theta}]=\{\rho e^{i\theta}|\rho\in D\}\} C∗/D={[eiθ]∣θ∈[0,2π),[eiθ]={ρeiθ∣ρ∈D}}
(4)
U n = { e 2 π k i n ∣ k = 0 , 1 , ⋯ , n − 1 } U_n=\{e^{\frac{2\pi ki}n}|k=0,1,\dotsi,n-1\} Un={en2πki∣k=0,1,⋯,n−1}
U = { e i θ ∣ θ ∈ [ 0 , 2 π ) } U=\{e^{i\theta}|\theta\in [0,2\pi)\} U={eiθ∣θ∈[0,2π)}
U / U n = { [ r ] ∣ r ∈ [ 0 , e 2 π n ) , [ r ] = { r ⋅ e i θ i ∣ θ i ∈ { 0 , 2 π n , 4 π n , ⋯ } } } U/U_n=\{[r]|r\in[0,e^{\frac{2\pi }n}),[r]=\{r\cdot e^{i\theta_i}|\theta_i\in \{0,\frac{2\pi}n,\frac{4\pi}n,\dotsi\}\}\} U/Un={[r]∣r∈[0,en2π),[r]={r⋅eiθi∣θi∈{0,n2π,n4π,⋯}}}
13.4 群同态和同态基本定理
例13.21(凯莱定理)
任一有限群必定同构于一个同阶的置换群
设G的阶为n,由例13.13知存在集合G上的一个置换群 Σ \Sigma Σ
Σ = { σ g ∣ g ∈ G , σ g : G → G } \Sigma=\{\sigma_g|g\in G,\sigma_g:G\to G\} Σ={σg∣g∈G,σg:G→G}
其中 σ g ( g ′ ) = g g ′ \sigma_g(g')=gg' σg(g′)=gg′,然后证明 G ≅ Σ G\cong \Sigma G≅Σ
- 因为群中有消去律,知 σ g ≠ σ g ′ \sigma_g\neq\sigma_{g'} σg=σg′,当且仅当 g ≠ g ′ g\neq g' g=g′,故 σ g \sigma_g σg是一一对应的
- 又 φ ( g g ′ ) = σ g g ′ = σ g σ g ′ = φ ( g ) φ ( g ′ ) \varphi(gg')=\sigma_{gg'}=\sigma_g\sigma_{g'}=\varphi(g)\varphi(g') φ(gg′)=σgg′=σgσg′=φ(g)φ(g′)
例13.22
同阶的循环群同构
证明:
构造同构映射 φ ( a k ) = b k \varphi(a^k)=b^k φ(ak)=bk
定义(同态映射)
同态映射: ϕ ( g 1 ⋅ g 2 ) = ϕ ( g 1 ) ∗ ϕ ( g 2 ) \phi(g_1\cdot g_2)=\phi(g_1)*\phi(g_2) ϕ(g1⋅g2)=ϕ(g1)∗ϕ(g2), ϕ \phi ϕ为满射时有同态, ϕ \phi ϕ为双射时有同构
Tips: ϕ ( e ) = e ′ \phi(e)=e' ϕ(e)=e′
定义13.18(同态核)
φ \varphi φ是同态映射, K = { x ∈ G ∣ ϕ ( x ) = e ′ } K=\{x\in G|\phi(x)=e'\} K={x∈G∣ϕ(x)=e′},记为 K e r φ Ker\varphi Kerφ或 K ( φ ) K(\varphi) K(φ)
容易验证K是G的子群:
- 同态映射 φ ( k 1 ) , φ ( k 2 ) = e ′ , 则 φ ( k 1 k 2 ) = φ ( k 1 ) φ ( k 2 ) = e ′ \varphi(k_1),\varphi(k_2)=e',则\varphi(k_1k_2)=\varphi(k_1)\varphi(k_2)=e' φ(k1),φ(k2)=e′,则φ(k1k2)=φ(k1)φ(k2)=e′,满足封闭性
- φ ( g − 1 ) ⋅ φ ( g ) = φ ( e ) = e ′ \varphi(g^{-1})\cdot\varphi(g)=\varphi(e)=e' φ(g−1)⋅φ(g)=φ(e)=e′,且 φ ( g ) = e ′ \varphi(g)=e' φ(g)=e′,则 φ ( g − 1 ) = e ′ \varphi(g^{-1})=e' φ(g−1)=e′,满足有逆元
K是正规子群:由定理13.18
φ ( g − 1 k g ) = φ ( g − 1 k g ) = φ ( g − 1 ) φ ( k ) φ ( g ) = φ ( g − 1 g ) = φ ( e ) \varphi(g^{-1}kg)=\varphi(g^{-1}kg)=\varphi(g^{-1})\varphi(k)\varphi(g)=\varphi(g^{-1}g)=\varphi(e) φ(g−1kg)=φ(g−1kg)=φ(g−1)φ(k)φ(g)=φ(g−1g)=φ(e)
根据同态映射的性质, φ ( g ) φ ( e ) = φ ( g ) \varphi(g)\varphi(e)=\varphi(g) φ(g)φ(e)=φ(g),可以说明 φ ( e ) = e ′ \varphi(e)=e' φ(e)=e′
定理 13.19:群G自然同态于它的任一商群G/H
证明:构造映射 f ( g ) = g H f(g)=gH f(g)=gH,显然有满射
f ( g g ′ ) = g g ′ H = g H □ g ′ H = f ( g ) □ f ( g ′ ) f(gg')=gg'H=gH\Box g'H=f(g)\Box f(g') f(gg′)=gg′H=gH□g′H=f(g)□f(g′),所以f是同态映射
这个同态又称为自然同态
定理13.20(群同态基本定理)
当同态映射 φ : G → G ′ \varphi:G\to G' φ:G→G′为满同态映射时,有 G / K ≅ G ′ G/K\cong G' G/K≅G′(一般形式为 G / K ≅ φ ( g ) G/K\cong \varphi(g) G/K≅φ(g))
证明:
构造映射 ψ ( g K ) = φ ( g ) \psi(gK)=\varphi(g) ψ(gK)=φ(g), ψ \psi ψ是同态映射,且是双射
证明是映射:设 x K = y K , y = x k 1 k 2 − 1 = x k ′ xK=yK,y=xk_1k_2^{-1}=xk' xK=yK,y=xk1k2−1=xk′
ψ ( y K ) = ψ ( x k ′ K ) = φ ( x k ′ ) = φ ( x ) φ ( k ′ ) = φ ( x ) = ψ ( x K ) \psi(yK)=\psi(xk'K)=\varphi(xk')=\varphi(x)\varphi(k')=\varphi(x)=\psi(xK) ψ(yK)=ψ(xk′K)=φ(xk′)=φ(x)φ(k′)=φ(x)=ψ(xK)证明内射:设 x K ≠ y K , x − 1 y ∉ K xK\neq yK,x^{-1}y\not\in K xK=yK,x−1y∈K
φ ( x − 1 y ) ≠ e ′ φ ( x − 1 ) φ ( y ) ≠ e ′ φ ( x ) ≠ φ ( y ) ψ ( x K ) ≠ ψ ( y K ) \varphi(x^{-1}y)\neq e'\\ \varphi(x^{-1})\varphi(y)\neq e'\\ \varphi(x)\neq\varphi(y)\\ \psi(xK)\neq \psi(yK) φ(x−1y)=e′φ(x−1)φ(y)=e′φ(x)=φ(y)ψ(xK)=ψ(yK)
说明G’中每个元素只对应一个象源证明满射: φ ( g ) = ψ ( g K ) \varphi(g)=\psi(gK) φ(g)=ψ(gK)
证明同态映射: ψ ( x K □ y K ) = ψ ( x y K ) = φ ( x y ) = φ ( x ) φ ( y ) = ψ ( x K ) ψ ( y K ) \psi(xK\Box yK)=\psi(xyK)=\varphi(xy)=\varphi(x)\varphi(y)=\psi(xK)\psi(yK) ψ(xK□yK)=ψ(xyK)=φ(xy)=φ(x)φ(y)=ψ(xK)ψ(yK)
由定理13.19,定理13.20以及习题13.36可以画出如下的群同态关系图
![]()
第13章习题四
习题13.37
证明
ϕ
(
G
)
⊆
G
′
\phi(G)\subseteq G'
ϕ(G)⊆G′是G‘的子群,其中
ϕ
:
G
→
G
′
\phi:G\to G'
ϕ:G→G′为同态映射
证明:由子群的等价性定义
- 封闭性: ϕ ( g ) ϕ ( g ′ ) = ϕ ( g g ′ ) ∈ ϕ ( G ) \phi(g)\phi(g')=\phi(gg')\in \phi(G) ϕ(g)ϕ(g′)=ϕ(gg′)∈ϕ(G)
- 有逆元: ϕ ( g ) ⋅ ϕ ( g − 1 ) = ϕ ( e ) = e ′ \phi(g)\cdot\phi(g^{-1})=\phi(e)=e' ϕ(g)⋅ϕ(g−1)=ϕ(e)=e′
习题13.40*
证明
(1)
[
D
;
⋅
]
≅
[
R
;
+
]
,
D
=
{
x
>
0
∣
x
∈
R
}
[D;\cdot]\cong [R;+],D=\{x>0|x\in R\}
[D;⋅]≅[R;+],D={x>0∣x∈R}
(2) [ Q + ; ⋅ ] ≇ [ Q ; + ] [Q_+;\cdot]\not\cong[Q;+] [Q+;⋅]≅[Q;+],其中 Q + = { x > 0 ∣ x ∈ Q } Q_+=\{x>0|x\in Q\} Q+={x>0∣x∈Q}
(3) Z 4 Z_4 Z4不同构于 K 4 K_4 K4(克莱茵四元群)
(4)若G与G‘同态,G与G’同构当且仅当 K = { e } K=\{e\} K={e}
证明:
(1)
构造映射 ϕ ( r ) = e r . r ∈ R \phi(r)=e^r.r\in R ϕ(r)=er.r∈R,显然双射
ϕ ( r 1 + r 2 ) = e r 1 + r 2 = e r 1 e r 2 = ϕ ( r 1 ) ϕ ( r 2 ) \phi(r_1+r_2)=e^{r_1+r_2}=e^{r_1}e^{r_2}=\phi(r_1)\phi(r_2) ϕ(r1+r2)=er1+r2=er1er2=ϕ(r1)ϕ(r2)
(2)
设有同构映射 ϕ : Q → Q + , ϕ ( q ) = q + \phi:Q\to Q_+,\phi(q)=q_+ ϕ:Q→Q+,ϕ(q)=q+
ϕ ( y ) = 2 \phi(y)=2 ϕ(y)=2, ϕ ( y / 2 + y / 2 ) = ϕ ( y / 2 ) 2 = 2 , ϕ ( y / 2 ) = 2 \phi(y/2+y/2)=\phi(y/2)^2=2,\phi(y/2)=\sqrt2 ϕ(y/2+y/2)=ϕ(y/2)2=2,ϕ(y/2)=2,矛盾
(3)
设有同构映射 ϕ : Z 4 → K 4 \phi:Z_4\to K_4 ϕ:Z4→K4
ϕ ( [ 1 ] ⊗ [ 1 ] ) = ϕ ( [ 1 ] ) ϕ ( [ 1 ] ) = e = ϕ ( [ 0 ] ) \phi([1]\otimes[1])=\phi([1])\phi([1])=e=\phi([0]) ϕ([1]⊗[1])=ϕ([1])ϕ([1])=e=ϕ([0]),与 ϕ ( [ 1 ] ⊗ [ 1 ] ) = ϕ ( [ 1 ] ) \phi([1]\otimes[1])=\phi([1]) ϕ([1]⊗[1])=ϕ([1])矛盾
(4)
G与G‘同态,说明 ϕ : G → G ′ \phi:G\to G' ϕ:G→G′为满射
由群同态基本定理有 G / K ≅ G ′ G/K\cong G' G/K≅G′
充分性:当K={e},G/K=G
必要性:当 K ≠ { e } K\neq\{e\} K={e},显然|K| >1,|G/K|< |G|,则 G / K ≠ G G/K\neq G G/K=G
习题13.41*
证明:(
C
∗
,
D
,
U
,
U
n
C^*,D,U,U_n
C∗,D,U,Un如习题13.35所示)
(1) R / Z ≅ U R/Z\cong U R/Z≅U
(2) C ∗ / D ≅ U C^*/D\cong U C∗/D≅U
(3) C ∗ / U ≅ D C^*/U\cong D C∗/U≅D
(4) U / U n ≅ U U/U_n\cong U U/Un≅U
(1)
U = { a + i b ∣ a , b ∈ R , ∣ a 2 + b 2 ∣ = 1 } U=\{a+ib|a,b\in R,|a^2+b^2|=1\} U={a+ib∣a,b∈R,∣a2+b2∣=1}
同态映射 ϕ ( r ) = e 2 π r i \phi(r)=e^{2\pi ri} ϕ(r)=e2πri,同态核 K ( ϕ ) = { e 2 π r i = 1 ∣ r ∈ R } = { r ∣ r = ⋯ , − 1 , 0 , 1 , ⋯ } = Z K(\phi)=\{e^{2\pi ri}=1|r\in R\}=\{r|r=\dotsi,-1,0,1,\dotsi\}=Z K(ϕ)={e2πri=1∣r∈R}={r∣r=⋯,−1,0,1,⋯}=Z
(2)
同态映射 ϕ ( ρ e i θ ) = e i θ \phi(\rho e^{i\theta})=e^{i\theta} ϕ(ρeiθ)=eiθ,其中 ρ > 0 \rho>0 ρ>0
K ( ϕ ) = { ϕ ( ρ e i θ ) = e i θ = 1 } = { ρ e i θ ∣ θ = 2 k π , ρ > 0 } K(\phi)=\{\phi(\rho e^{i\theta})=e^{i\theta}=1\}=\{\rho e^{i\theta}|\theta=2k\pi,\rho>0\} K(ϕ)={ϕ(ρeiθ)=eiθ=1}={ρeiθ∣θ=2kπ,ρ>0}
思路:找到同态核如何拓展右式到左式,以拓展方式作为映射
(3)
同态映射 ϕ ( ρ e i θ ) = ρ \phi(\rho e^{i\theta})=\rho ϕ(ρeiθ)=ρ
K ( ϕ ) = { ϕ ( ρ e i θ ) = 1 } = { ρ e i θ ∣ ρ = 1 , θ ∈ ( 0 , 2 π ) } K(\phi)=\{\phi(\rho e^{i\theta})=1\}=\{\rho e^{i\theta}|\rho=1,\theta\in (0,2\pi)\} K(ϕ)={ϕ(ρeiθ)=1}={ρeiθ∣ρ=1,θ∈(0,2π)}
(4)
U / U n = { [ e i θ ] ∣ θ ∈ [ 0 , 2 π n ) } U/U_n=\{[e^{i\theta}]|\theta\in [0,\frac{2\pi}n)\} U/Un={[eiθ]∣θ∈[0,n2π)}
ϕ ( [ e i θ ] ) = e i n θ \phi([e^{i\theta}])=e^{in\theta} ϕ([eiθ])=einθ,显然一一对应
或者: ϕ ( x ) = x n , k e r ϕ = { x n = 1 ∣ x ∈ U } = U n \phi(x)=x^n,ker\phi=\{x^n=1|x\in U\}=U_n ϕ(x)=xn,kerϕ={xn=1∣x∈U}=Un
(5)
ϕ ( ρ x ) = ρ x n \phi(\rho x)=\rho x^n ϕ(ρx)=ρxn
k e r ϕ = { ρ x n ∣ ρ = 1 , x n = 1 } = U n ker\phi=\{\rho x^n|\rho=1,x^n=1\}=U_n kerϕ={ρxn∣ρ=1,xn=1}=Un
习题13.42
证明
[
Z
2
×
Z
2
;
+
]
[Z_2\times Z_2;+]
[Z2×Z2;+]同构于
K
4
K_4
K4,其中运算+定义为各分量模2的加
作映射 ( 0 , 0 ) − > e , ( 0 , 1 ) − > a , ( 1 , 0 ) − > b , ( 1 , 1 ) − > r (0,0)->e,(0,1)->a,(1,0)->b,(1,1)->r (0,0)−>e,(0,1)−>a,(1,0)−>b,(1,1)−>r
显然是双射
经过分析知映射满足同态映射的条件
![]()
第13章习题五
1
群G是阶偶数的有限群,则G中阶2的元素个数一定是奇数
阶1:0
阶大于2:元素成对存在,a的阶为p,a-1也是阶大于2的,且 a ≠ a − 1 a\neq a^{-1} a=a−1,否则 a a − 1 = e aa^{-1}= e aa−1=e不成立;且 a p − 1 a^{p-1} ap−1与p互素
阶等于2:奇数个
2
设G是rs阶循环群,(r,s)=1,H1和H2分别为G的r阶和s阶子群,证明
G
=
H
1
H
2
=
{
h
1
h
2
∣
h
1
∈
H
1
,
h
2
∈
H
2
}
G=H_1H_2=\{h1h2|h1\in H1,h2\in H2\}
G=H1H2={h1h2∣h1∈H1,h2∈H2}
H 1 = { a 0 , a 1 , ⋯ , a r − 1 } , H 2 = { b 0 , b 1 , ⋯ , b s − 1 } H_1=\{a^0,a^1,\dotsi,a^{r-1}\},H_2=\{b^0,b^1,\dotsi,b^{s-1}\} H1={a0,a1,⋯,ar−1},H2={b0,b1,⋯,bs−1}
由习题13.20,ab的阶为nm
{ a b , ( a b ) 1 , ⋯ , ( a b ) n m − 1 } = { h 1 h 2 ∣ h 1 ∈ H 1 , h 2 ∈ H 2 } \{ab,(ab)^1,\dotsi,(ab)^{nm-1}\}=\{h1h2|h1\in H1,h2\in H2\} {ab,(ab)1,⋯,(ab)nm−1}={h1h2∣h1∈H1,h2∈H2},因为互不相同
x=a^k=a^k(mr+ns)=a^kmr a^kns
由于 a b ∈ G , ∴ G = H 1 H 2 ab\in G,\therefore\ G=H_1H_2 ab∈G,∴ G=H1H2
3
[H1;·]和[H2;·]是群[G;·]的子群,[H1 ∪ H2;·] 是否是群[G;·]的子群?说明理由
显然不是,不满足封闭性
4
设H1,H2是G的子群,证明H1H2是G的子群当且仅当H1H2=H2H1,其中
H
1
H
2
=
{
h
1
h
2
∣
h
1
∈
H
1
,
h
2
∈
H
2
}
,
H
2
H
1
=
{
h
2
h
1
∣
h
1
∈
H
1
,
h
2
∈
H
2
}
H1H2=\{h_1h_2|h_1\in H1,h_2\in H2\}, H2H1=\{h_2h_1|h_1\in H1,h_2\in H2\}
H1H2={h1h2∣h1∈H1,h2∈H2},H2H1={h2h1∣h1∈H1,h2∈H2}
充分性:
首先满足封闭性,由定义任意元素相乘在H1H2中
其次满足有逆元, h 1 h 2 = h 2 h 1 → ( h 1 h 2 ) ( h 1 − 1 h 2 − 1 ) h_1h_2=h_2h_1\to (h_1h_2)(h_1^{-1}h_2^{-1}) h1h2=h2h1→(h1h2)(h1−1h2−1)
必要性:
当H1H2是为G的子群
( h 2 h 1 ) ( h 1 − 1 h 2 − 1 ) = e , h 1 − 1 h 2 − 1 ∈ H 1 H 2 (h_2h_1)(h_1^{-1}h_2^{-1})=e,h_1^{-1}h_2^{-1}\in H_1H_2 (h2h1)(h1−1h2−1)=e,h1−1h2−1∈H1H2,所以
( h 1 − 1 h 2 − 1 ) − 1 = h 2 h 1 ∈ H 1 H 2 (h_1^{-1}h_2^{-1})^{-1}=h_2h_1\in H_1H_2 (h1−1h2−1)−1=h2h1∈H1H2,说明 H 2 H 1 ⊆ H 1 H 2 H_2H_1\subseteq H_1H_2 H2H1⊆H1H2,同理有另一侧
最后有H1H2=H2H1
5
ϕ
\phi
ϕ为群中映射
[
G
;
∗
]
→
[
G
′
;
∘
]
[G;*]\to[G';\circ]
[G;∗]→[G′;∘],为一一对应当且仅当
K
(
ϕ
)
=
{
e
G
}
K(\phi)=\{e_G\}
K(ϕ)={eG}(见前面的习题)
必要性:
显然K只能包含一个元素,否则不满足双射
ϕ ( a ) = ϕ ( e G ∗ a ) = ϕ ( e G ) ϕ ( a ) \phi(a)=\phi(e_G*a)=\phi(e_G)\phi(a) ϕ(a)=ϕ(eG∗a)=ϕ(eG)ϕ(a)
显然 ϕ ( e G ) \phi(e_G) ϕ(eG)是G’中的单位元
充分性:
假设不是内射
ϕ ( x ) = ϕ ( y ) , ϕ ( e ) = ϕ ( x x − 1 ) = ϕ ( x ) ϕ ( y ) \phi(x)=\phi(y),\phi(e)=\phi(xx^{-1})=\phi(x)\phi(y) ϕ(x)=ϕ(y),ϕ(e)=ϕ(xx−1)=ϕ(x)ϕ(y),矛盾
6
设
ϕ
\phi
ϕ是群G到G’的同态映射,证明:
(1) 若H是G的子群,则 ϕ ( H ) \phi(H) ϕ(H)也是G’的子群
(2) 若H是正规子群, ϕ ( H ) \phi(H) ϕ(H)也是正规子群
(1)
封闭性: ϕ ( h 1 ) ϕ ( h 2 ) = ϕ ( h 1 h 2 ) ∈ ϕ ( H ) \phi(h_1)\phi(h_2)=\phi(h_1h_2)\in \phi(H) ϕ(h1)ϕ(h2)=ϕ(h1h2)∈ϕ(H)
有逆元: ϕ ( h ) \phi(h) ϕ(h)的逆元是 ϕ ( h − 1 ) \phi(h^{-1}) ϕ(h−1)
(2)
g h g − 1 ∈ H ghg^{-1}\in H ghg−1∈H, ϕ ( g h g − 1 ) = ϕ ( g ) ϕ ( h ) ϕ ( g − 1 ) = ϕ ( g ) ϕ ( h ) ϕ ( g ) − 1 \phi(ghg^{-1})=\phi(g)\phi(h)\phi(g^{-1})=\phi(g)\phi(h)\phi(g)^{-1} ϕ(ghg−1)=ϕ(g)ϕ(h)ϕ(g−1)=ϕ(g)ϕ(h)ϕ(g)−1
其中 ϕ ( g ) ∈ G ′ , ϕ ( h ) ∈ ϕ ( H ) \phi(g)\in G',\phi(h)\in \phi(H) ϕ(g)∈G′,ϕ(h)∈ϕ(H)
所以 ϕ ( H ) \phi(H) ϕ(H)也是正规子群