近世代数--环同态--环的扩张定理

本文介绍了近世代数中的一个重要概念——环的扩张定理,探讨了如何通过单同态将环扩大为具有特定性质的环。通过详细证明和实例解释了如何构造环S以及映射φ,阐述了扩张定理的数学原理及其在抽象代数中的意义。同时,该文还提及了扩张定理在密码学和信息安全领域的潜在应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近世代数--环同态--环的扩张定理

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

域的扩张定理用来将一已知的环扩大为某一具有特定性质的环。

S ˉ 、 R \bar{S}、R SˉR是环, S ˉ ∩ R = ∅ , φ ˉ : S ˉ → R \bar{S}\cap R=\empty,\bar{\varphi}:\bar{S}\rightarrow R SˉR=,φˉ:SˉR是单同态,

  • ∃ S , S \exists S,S S,S是环, S ≅ R , φ : S → R S\cong R,\varphi:S\rightarrow R SR,φ:SR是同构,
  • S ′ ≤ S , S'\le S, SS,
  • φ ∣ s ˉ = φ ˉ \varphi|\bar{s}=\bar{\varphi} φsˉ=φˉ

证明:把已知环 S ′ S' S扩大为环 S S S

  • 构造环 S S S

    • S = ( R − φ ˉ ( S ˉ ) ) ∪ S ˉ S=(R-\bar{\varphi}(\bar{S}))\cup \bar{S} S=(Rφˉ(Sˉ))Sˉ
      在这里插入图片描述

    • 构造映射 φ : S → R \varphi:S\rightarrow R φ:SR φ ( x ) = { φ ˉ ( x ) , x ∈ S ˉ x , x ∉ S ˉ \varphi(x)=\left\{ \begin{aligned} \bar{\varphi}(x),x\in \bar{S}\\ x,x\notin \bar{S} \end{aligned} \right. φ(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值