rpn产生proposals_Faster-rcnn源码解析4

我们已经训练出了rpn网络,下面利用训练好的rpn网络来生成proposals。

下面来看一下rpn_generate函数:

首先设置参数:

然后得到一个pascal_voc类:imdb = get_imdb(imdb_name)

加载训练的rpn网络:rpn_net = caffe.Net(rpn_test_prototxt, rpn_model_path, caffe.TEST)

然后得到生成的proposals(候选区域,最多2000个):rpn_proposals = imdb_proposals(rpn_net, imdb),得到的rpn_proposals 是一个列表,列表中的每个元素是每个图片的rpn_proposals,,而且rpn_proposals是一个len(keep)行4列的矩阵,其中len(keep)的最大值为2000。

好了,下面看一下imdb_proposals函数的具体结构:

这里可以看到imdb_boxes是一个列表,列表中元素初始化为空。imdb_boxes也是返回值。在这个函数中,首先用cv2.imread读取图片数据,然后用im_proposals函数来得到proposals和对应的前景得分。

具体来看一下im_proposals函数:

首先获取网络的输入数据

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Faster-RCNN是一种用于目标检测的深度学习网络模型。它是在R-CNN和Fast RCNN的基础上发展而来的,通过将特征抽取、proposal提取、bounding box regression和classification整合在一个网络中,提高了综合性能和检测速度。[2] Faster-RCNN的训练过程可以分为以下几个步骤: 1. 使用一个预训练的卷积神经网络(如VGG16)来提取图像的特征。 2. 在特征图上使用Region Proposal Network (RPN) 来生成候选目标框(proposals)。 3. 使用这些候选目标框和真实标签来计算损失函数,并通过反向传播来更新网络参数,以使网络能够更好地预测目标框的位置和类别。 4. 使用训练好的RPN生成候选目标框,并将这些候选目标框输入到网络中进行分类和边界框回归。 5. 通过计算损失函数并反向传播来更新网络参数,以进一步提高检测性能。 6. 可以进行多次迭代的训练,每次迭代都使用之前训练好的网络来初始化网络参数,并继续训练网络。[3] Faster-RCNN的网络结构包括一个共享的卷积层(用于特征提取)和两个分支:一个用于生成候选目标框的RPN,另一个用于对这些候选目标框进行分类和边界框回归。通过共享卷积层,Faster-RCNN能够在不同尺度的特征图上进行目标检测,从而提高检测的准确性和效率。[2] 总结来说,Faster-RCNN是一种用于目标检测的深度学习网络模型,通过整合特征抽取、proposal提取、bounding box regression和classification,提高了综合性能和检测速度。它的训练过程包括特征提取、候选目标框生成、分类和边界框回归等步骤。[2][3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值