光滑曲线_微分几何笔记(4) —— 二维三维空间中曲线的曲率以及环绕数

本文深入探讨二维和三维空间中曲线的曲率概念,解释曲率如何反映曲线的凹凸性质,并展示了非弧长参数化曲线的曲率表达式。同时,文章介绍了环绕数定理,它是衡量平面曲线全局性质的重要指标,特别是对闭合曲线的环绕次数的计算。文中还引用了相关教材和参考资料,为深入理解微分几何提供基础。
摘要由CSDN通过智能技术生成

489997c29f8f7dca3513e49998630f3b.png

 本篇文章我们从一般化的

空间回到我们生活的
空间,看看低维空间中的曲线有哪些性质,主要计算下在非弧长参数下的曲线,曲率挠率的一般表达式。 最后引入环绕数的概念,讲讲怎么数曲线转了多少圈。

4.1 二维空间中的曲线

二维空间中的曲线(plane curves)的Frenet运动方程:

这里

,曲率
,详细的定义写在之前一篇笔记中。 进一步,在弧长参数下有
所以有

这里我们可以看到平面曲线曲率正负的意义: 首先最主要的一点是,因为在每一点曲率是一个数而已,这说明曲线二阶导的方向,与

的方向相同或者相反,总之他们在一条直线上!

(我写完之后几天又绕回了这个问题,发现这是相当本质的一个结论,

维欧式空间中,非退化的曲线,在弧长参数下,自身前
阶导数就是正交的!)(那么对于k>n,k阶导数呢?)

因为二阶导数的正负,决定了曲线的凹凸性,二阶导大于0,曲线下凸;二阶导小于0,曲线上凸;二阶导等于0,曲线没有凸性。 再结合由Frenet标架自身性质所决定的,

为曲线的切线方向,
逆时针旋转
得到(为了和
空间中的基底保持相同定向。)所以我们知道,
表示
与曲线弯曲方向相同,反之,
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值