数值积分与数值微分方法比较_矩阵与数值计算(17)——常微分方程的数值解法之基于数值积分的解法...

本文介绍了数值积分在解决一阶常微分方程初值问题中的应用,包括线性单步法如Euler公式、隐Euler公式和梯形公式,并探讨了误差分析,如局部误差和整体误差。此外,文章还简要提及了两步法中的Simpson公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

36561c2995bef4fef4197ad0b35e3412.png

前言

在科学与工程技术问题中,有很多问题的数学模型是常微分方程的初值问题或边值问题,研究这些问题的数值解法不仅有重要的理论意义,而且有广泛的实践意义。微分方程数值解法就是利用计算机求解微分方程近似解的数值方法。

一、一阶常微分方程的初值问题

对于形如

equation?tex=%5Cbegin%7Bcases%7D+u%27%3Df%28t%2Cu%29%2C%5Cquad+a%5Cle+t%5Cle+b%5C%5C+u%28a%29+%3D+u_0+%5Cend%7Bcases%7D ,这就是一阶常微分方程的初值问题。等价的积分方程为

equation?tex=u%28t%29+%3D+u_0%2B%5Cint_a%5Etf%28%5Ctau%2Cu%28%5Ctau%29%29d%5Ctau

equation?tex=f%28t%2Cu%29 满足Lipschitz条件,即存在常数L,对任意
equation?tex=t%5Cin%5Ba%2Cb%5D ,均有

equation?tex=%7Cf%28t%2Cu%29-f%28t%2C%5Cbar+u%29%7C%5Cle+L%7Cu-%5Cbar+u%7C ,则一阶常微分方程解存在且唯一。

但是对于这种问题大多数情况下不能求出解析解,因此只能通过数值解法求出数值解。

数值解法思想

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值