分割点云数据_Transformer 最新应用,3D 点云处理,实现 S3DIS 数据集场景分割mIoU首次突破 70% !...

Point Transformer借鉴自注意力网络,应用于3D点云处理,特别是在S3DIS数据集的语义场景分割任务中,实现了70.4%的mIoU,创历史新高,首次超过70%的阈值。
摘要由CSDN通过智能技术生成

d5532b0f6de8e638fffd60c04cc3782d.png

#Point Transformer#

Point Transformer

自注意力网络已经彻底改变了自然语言处理,并在图像分类和目标检测等图像分析任务中取得了不错的进展。

基于以上工作成功的启发,作者研究了自注意力网络在 3D 点云处理中的应用。为点云设计了自注意力层,并利用这些自注意力层来构建自注意力网络,用于诸如语义场景分割、物体部分分割和物体分类等任务。

fc132c52e57ec6388ff3521a783c81e8.png

05de8ba1297e5f49100d5281ca3ffc3e.png

cce7790e2d85c5d9f8fb537f21908c57.png

Point Transformer 的设计改进了之前跨领域和任务的工作。例如,在具有挑战性的大规模语义场景分割的 S3DIS 数据集上,Point Transformer 在 Area 5 上达到了 70.4% 的 mIoU,比之前最强的模型高出 3.3 个绝对百分点,并首次突破了 70% 的 mIoU 阈值。

f11f3b80310a84a8bff468fac2d107ce.png

authors | Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, Vladlen Koltun

units | 牛津大学;香港中文大学;英特尔

paper | Point Transformer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值