我得到了一些东西作为Excel的线性拟合,使用scipy basinhopping而不是曲线拟合和大量迭代。运行迭代需要一点时间,而且还需要一个错误函数,但它是在没有缩放原始数据的情况下完成的。Basinhopping docs.import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import basinhopping
def func( x0, x_data, y_data ):
error = 0
for x_val, y_val in zip(x_data, y_data):
error += (y_val - (x0[0]*x_val + x0[1]))**2
return error
x_data = [290., 300., 310.]
y_data = [1.87e+21, 2.07e+21, 2.29e+21]
a = 1
b = 1
x0 = [a, b]
minimizer_kwargs = { 'method': 'TNC', 'args': (x_data, y_data) }
res = basinhopping(func, x0, niter=1000000, minimizer_kwargs=minimizer_kwargs)
print res
这给出了x:array([7.72723434e+18,-2.38554994e+20]),但是如果您再试一次,您会发现这有一个非唯一结果的问题,尽管它会给出类似的大概值。在
下面是fit与Excel解决方案的比较。在