
0 序言
在求和型数列中,常用的方法是夹逼准则结合定积分知识,这部分内容我会在下一次笔记中更新,本篇主要是介绍一下对于一些特定求和型的数列,我们常见的求和公式以及对这些公式进行不同方法的推导,当作是课外知识的补充。
1 常见求和公式

【记忆】
其中,(3)有一个口诀是“前N个自然数的立方和等于其和的平方”;
(4)和(5)实际上是同一类,即等于最后一个项再往后乘一个数,然后除以项的个数,如(4)最后一项是
2 公式推导
在这里,我们是要在不知道求和后的公式情况下进行推导记忆,所以不会选择数学归纳法法。 本篇利用的方法主要由两种类型,一种是带有一定技巧性但可以普遍使用的组合公式法,一种是不管三七二十一的暴力待定系数法。
【组合公式法】
这里的核心公式是

主要针对公式(4)进行推导,因为(4)和(5)的推导思路是一样的,由(4)和(5)通过公式的转化也不难得到(2)和(3)。
下面来推导公式(4):
首先由上面的组合基本等式,可得
原式=
=
同样的思路可以推得(5)以及继续增加项的式子和。
【待定系数法】
这种方法就比较简单暴力了,记住一个规律,就是“通项为g个数相乘的数列求和,和的最高次幂不超过(g+1)”。
举个例子,我们可以看到,在式子(4)中,通项是
有了这个思路,那我们相求它的和就不管它什么形式了,直接利用待定系数就完事了。
还是用(4)做例子进行推导:
设
我们可以将n引申到n=0,直接可得d=0,这也是为什么所有公式都带有n以及没有常数项。
即
将

即
=