n平方的求和公式_极限求解--数列前n项和公式推导(补充知识)

这篇博客介绍了数列前n项和的一些常见公式,包括n平方的求和,并提供了两种推导方法:组合公式法和待定系数法。重点讲解了如何利用这些方法推导公式,例如通过组合基本等式推导(4)和(5),以及应用待定系数法解决类似(4)的数列求和问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7ecfc9151fc62687d089720b93ee35ac.png

0 序言

在求和型数列中,常用的方法是夹逼准则结合定积分知识,这部分内容我会在下一次笔记中更新,本篇主要是介绍一下对于一些特定求和型的数列,我们常见的求和公式以及对这些公式进行不同方法的推导,当作是课外知识的补充。

1 常见求和公式

c5f0ac2180c448f0dab1e1359bcf763b.png

【记忆】

其中,(3)有一个口诀是“前N个自然数的立方和等于其和的平方”;

(4)和(5)实际上是同一类,即等于最后一个项再往后乘一个数,然后除以项的个数,如(4)最后一项是

,再往后一项就是
,项的个数就是3,就可以记住
了。看下面的推导方法1就可以深刻记住了!

2 公式推导

在这里,我们是要在不知道求和后的公式情况下进行推导记忆,所以不会选择数学归纳法法。 本篇利用的方法主要由两种类型,一种是带有一定技巧性但可以普遍使用的组合公式法,一种是不管三七二十一的暴力待定系数法

【组合公式法】

这里的核心公式是

,下面简单推导一下:

70e7b09caf3787c63b55586be373d0db.png

主要针对公式(4)进行推导,因为(4)和(5)的推导思路是一样的,由(4)和(5)通过公式的转化也不难得到(2)和(3)。

下面来推导公式(4):

首先由上面的组合基本等式,可得

=
=
=

原式=

=

=

同样的思路可以推得(5)以及继续增加项的式子和。

【待定系数法】

这种方法就比较简单暴力了,记住一个规律,就是“通项为g个数相乘的数列求和,和的最高次幂不超过(g+1)”。

举个例子,我们可以看到,在式子(4)中,通项是

,即为2个数相乘,那么它的数列和的最高次幂不超过3,这里也就是n的3次方。

有了这个思路,那我们相求它的和就不管它什么形式了,直接利用待定系数就完事了。

还是用(4)做例子进行推导

我们可以将n引申到n=0,直接可得d=0,这也是为什么所有公式都带有n以及没有常数项

代进去,可得

83bc279cebbb94186f84015a8907e054.png

=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值