当一个序列满足对于任意的前 项和都满足不小于_一个初学者的复分析笔记(二)...

b046161a11a047014cbac8bae2f0074a.png

二 复函数

一、解析函数的概念

复函数是指定义定义域和值域都是复数域的函数。解析函数是其中性质较好的一类函数,它们可以“自由地”进行微分和积分。像数学分析中那样,我们从极限入手,逐步定义出更高层次的概念。

1.极限与连续性

定义2.1.1 称当

趋于
时函数
有极限
,当且仅当

并记作

类似地可以定义各种无穷情况下的极限,要注意的是,在实数的情形下,无穷有

之分,而复函数情形下我们只有
的定义。

显然实函数中关于极限的和、差、积、商的相关结果在复情形下仍然有效,这是因为下面两条模的性质:

与实数的绝对值性质完全对应,而极限正是由绝对值定义。

根据定义,

因此

.

定义2.1.2 称函数

在点
处连续,当且仅当
;连续函数是指在其定义域内每个点上都连续的函数。

利用极限的性质,在

处连续的两个函数的和
与积
仍是在
处连续的;商
处有定义且连续,当且仅当
。再利用上面的结果知,如果
在点
处连续,那么
也在
处连续。

2.解析函数

定义2.2.1 函数在

处的导数是一个极限

由极限的性质依然有效,通常的函数的求导法也依然有效。

复函数的导数应当被看作是实函数的导数在复数域上的推广,但这种推广并不是完全顺利的,导数的存在性不能得到保证。考虑一个在

处可导的复变量的实值函数
。设
,那么一方面
是实数;另一方面
是纯虚数。因此只能有
。由此可知,
复变量的实函数要么导数不存在,要么导数为零。

一个实变量的复函数可以分解为

,于是
可导当且仅当
都可导。

可导的复变量的复函数是一类非常重要又有深远意义的函数,我们单独作定义:

定义2.2.2 解析函数是那些在定义域内每一点处都有导数的复变量的复函数,也称作全纯函数

定理2.1 复变量的复函数

(其中
是复变量的实函数)可导的必要条件是:
满足
柯西-黎曼微分方程组
;也就是

证明:

处可导,取
,那么

由此知定理成立,证毕。

由定理2.1,可导函数的导数有四个形式上不同的表达形式,通常我们选取最简单的:

例2.2.1

在后续章节,我们将会利用更高级的手段证明解析函数的导数仍然解析。我们暂时略去证明而承认这一事实,则

拥有各阶连续导函数,特别地,其混合偏导数相等。从柯西-黎曼微分方程组立即推出

满足拉普拉斯方程

的函数
称为
调和函数。以上事实这说明解析函数的实部、虚部调和。如果两个调和函数
满足柯西-黎曼微分方程组,称
共轭调和函数

例2.2.2

的共轭调和函数,那么
的共轭调和函数。

定理2.2

是一对共轭调和函数,则
是解析函数。

证明:

,由微分中值定理,

因此

解析,证毕。

一般来说,已知一对共轭调和函数

中的一个,可以对解柯西-黎曼方程组积分来求出另一个。但我们有如下更有趣且更能突显解析函数本质的做法。但请注意,如下的推导完全是形式上的,不具有任何证明力。首先给出一个引理:

引理2.1 解析函数

满足形式微分方程

证明:因为

,所以
,证毕。

根据这一形式上的引理,可以不用积分而求出实部已知的调和函数

和相应的解析函数
。首先注意到
关于
的形式导数为零,因此可以把它看作
的函数,并记作
。用这个记法可写出形式恒等式:

因为这个等式形式上成立,因此即使我们把

替换成复数也依然成立。代入
,得

因为最终所要确定的

可以相差一个纯虚数常数,因此可以假设
是实数,即
。从而
可由下式给出:

注:在上述推导中,无形中假定了

是有理函数(可以理解为形如多项式之比的函数)。但是所使用的方法可以推广至一般情形,也可以给出完整的证明。

3.多项式函数

因为常函数是导数为零的解析函数,

是导数为
的解析函数,而解析函数的和与积仍然解析,因此所有的复系数多项式函数
解析。

其导数为

。其中的的
称为
次多项式。

定理2.3(代数学基本定理)

时,方程
至少有一个根。(证明略)

归纳地,可以得到因式分解

如果恰有

相同,则它们的公共值称为
阶零点。显然所有的零点阶数之和等于多项式的次数。一个零点
的阶数也可以通过
的逐次导数得到:

定理2.4(卢卡斯定理)如果多项式

的所有零点都在一个半平面内,那么导数
的所有零点也都在同一半平面内。

证明:

,则
,从而有

。因为复平面上的直线可表示为参数方程
,可以设
的零点都在半平面
上,即
。于是当
时,

因此

。从而

这说明

的零点都不在
内,证毕。

4.有理函数

定义2.4.1 有理函数是形如

的函数,其中
没有公因式的多项式。

定义2.4.2

的零点处取值
,这些点称作
极点。其 阶数定义为它作为
的零点的阶数。

可以把有理函数看作扩充复平面上的函数,并定义

。自然地可以定义
处的零点(极点),并定义其阶为有理函数
处的极点(零点)的阶数。以后统称
的零点和
处的极点为
的极点。

定义2.4.3 有理函数

定义为

定理2.5 阶为

的有理函数在扩充复平面上有
个零点(极点),其中每个零点(极点)按阶数计数。(直接对两类零点(极点)的阶数计数即证)

例(有理函数的部分分式表示法)

利用多项式除法,我们可以把有理函数拆解为

的形式,其中
是没有常数项的多项式,
是分子次数不大于分母的有理函数(因此
有限)。容易发现,
的次数正是
处极点的阶数。称多项式
处的
奇部

个故不相同的有限极点
,函数
是关于
的有理函数,且在
处有一个极点。利用前面的结果,有分解
,其中
是没有常数项的多项式,
处有限。

或作变量代换后有

。 称
处的奇部。

考虑表达式

,它是有理函数,且不能有
以外的极点。但是在任何一个
处,它都取得有限值;
处亦然。因此它没有极点。而没有极点的有理函数必是一个常数。把这个常数视作
的常数项,则有部分分式表示:

二、幂级数

5.序列

定义2.5.1 称序列

有极限
,如果

此时称序列

收敛,记作
;否则称其
发散

如果

,称其
发散到无穷,记作

定义2.5.2 一个序列是柯西序列,如果

定理2.6(柯西收敛准则) 复数序列收敛当且仅当它是柯西序列。

证明:1)必要性。

于是

2)充分性。由于不等式

总是成立,因此复数柯西序列的实部序列、虚部序列均是实数柯西序列。因此柯西序列的实部、虚部都收敛,进而柯西序列收敛。

6.级数

定义2.6.1 级数是指形式无穷和

。如果部分和的极限
存在,称级数
收敛,定义级数的 为这一极限,记作
;否则称级数
发散

级数

收敛的必要条件是
。(对级数对应的部分和应用柯西收敛准则并取
即证)

级数

同敛散。(柯西收敛准则)

定义2.6.2 称级数

绝对收敛,如果级数
收敛。

7.一致收敛性

定义2.7.1 称序列

在集合
一致收敛
,如果

显然一致收敛是比收敛更强的性质,作为对比,写出该序列收敛于

的定义:

类似地也有一致收敛性的柯西收敛准则,但注意判别法中选取的

一定要是与
的选取无关的。

定理2.7(魏尔斯特拉斯判别法)级数

(绝对)一致收敛,如果存在收敛级数
对于充分大的

8.幂级数

定义2.8.1 幂级数是指形如

的级数,并称作关于
的幂级数。

几何级数

是幂级数,其部分和为
,因此它收敛当且仅当

定理2.8(阿贝尔定理)对于幂级数

,存在
,称作
收敛半径,满足以下性质:

1)

绝对一致收敛。

2)

无界,从而
发散。

证明:对于

,依次验证上述性质成立:

1)

由魏尔斯特拉斯判别法,级数绝对一致收敛。

2)与1)完全同理。证毕。

定理2.9(逐项求导)设幂级数

收敛半径为
。则
时,作为
的函数,
是解析的,且其导数可以通过逐项求导求得,即
。且其导数的收敛半径仍为

证明:首先,因为

,所以级数
的收敛半径也是

其次,设

又设

,下证

,且
。考虑恒等式

时,由
的定义,

,而右边是一个收敛级数的余项,因此有

因此对于任何

,可以选取
使得对所有的

对于某个固定的

,由导数的定义,存在
,使得对所有

结合上述不等式得到

,这说明
存在且等于

注:这个证明实际上给出了收敛级数在其收敛半径内有任意阶导数。

10.阿贝尔极限定理

不失一般性地,设幂级数

的收敛半径为
,有如下定理。

定理2.10 如果

收敛,则当
“趋于”
而保持
有界时,

注:从几何观点来看,定理中的条件意味着

始终从一个顶点为
且关于区间
对称而小于
的角内趋于
。通常称这种趋近发生于一个斯托尔角内。

证明:不妨设

,记部分和为

则有恒等式

(阿贝尔分部求和)

,因此取极限得

不妨设

。因
,存在某个正整数
使得
时有

所以

由此得

于是

时,
,证毕。

三、指数函数和三角函数

引入复数的一大便利是将指数函数与三角函数统一了起来,或者说,让我们重新认识了这两类函数。

11.指数函数

作为实变量指数函数的延伸,指数函数应当是如下微分方程的解:

为了求解,设

,则

,得
。进而,归纳得

因为

,幂级数
在整个复平面上收敛。因此有

定义2.11.1 指数函数

,或记作

推论

;特殊地,有
,从而

证明:注意到

因此

。令
即证。

12.三角函数

定义2.12.1

或幂级数形式:

例(欧拉公式)

利用

,我们可以很容易地定义出其他三角函数,但没必要浪费篇幅。

推论 所有的三角函数都是

的有理函数。

13.周期性

定义2.13.1 如果

对所有
成立,则称
有周期

定理2.11

有最小正周期,且其所有周期都是最小正周期的整数倍。

证明:首先,

,即
的周期都是实数。

其次,当

时,

同样地,

更进一步,

;最终得到

这个不等式表明

,这说明存在
使得

于是

,因此
是一个周期。

事实上,

也是最小正周期。任取
,这说明
严格减。由于
,故
严格增。因此
。不等式
保证了
,因此
。这说明
的确是最小正周期。暂记作

最后,考虑任一个周期

,则存在整数
使得
。如果
,则意味着
将是一个比
更小的正周期,这是矛盾的。证毕。

定义2.13.2

从代数的观点来看,映射

是实数加法群到复平面单位圆的乘法群上的满同态,其核

14.对数函数

我们希望定义一个函数使得

是方程
的一个根,称作对数函数。显然这个函数在
处没有定义。对于

因为

是同构,从而是一一对应,所以方程在
上有
唯一
。再由指数函数的周期性,方程的所有解相差
的整数倍。因此有,

定义2.14.1 方程

的解实部确定;而虚部有无穷多个取值,它们构成模
的同余系,称之为复数
辐角,记作

定义2.14.2 对数函数定义为

注:对数函数通常由无穷多个取值。

我们可以重新严密地定义复数的极坐标表示:

,其中

定义2.14.3

由指数函数的加法定理,作为取值的集合,有

通过解方程

,有

定义2.14.4(反三角函数)

至此,我们重新严密定义了指数函数、三角函数、对数函数以及对数的辐角。而他们都可以用

和其反函数
表示。因此可以说,
本质上,只有一个初等超越函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值