主成分分析逆变换_通俗易懂的讲解奇异值分解(SVD)和主成分分析(PCA)

本文介绍了奇异值分解(SVD)和主成分分析(PCA)。SVD是矩形矩阵的特征分解,用于找到正交矩阵U、V和奇异值对角阵Σ。PCA是一种无监督学习算法,通过构建主成分降低数据维度,常用于数据可视化和减少过拟合。文中通过实例展示了如何计算PCA并解释了主成分的重要性。
摘要由CSDN通过智能技术生成

图片来自Unsplash上的Dave

0.本教程包含以下内容

特征分解

对称矩阵的特征分解

奇异值分解(The Singular Value Decomposition,SVD)

主成分分析(Principal Component Analysis ,PCA)——特征提取

1.特征分解

首先,我们简单回顾下特征值和特征向量的定义。在几何学中,矩阵A的特征向量是指一个经过与矩阵A变换后方向保持不变的向量(其中,假设特征值均为实数)。而特征值为在这个变化中特征向量的比例因子。具体可表示如下:

矩阵A与特征向量x的变换等于特征向量x与特征值λ的乘积

对于一个3×3维的矩阵A,我们可以将矩阵A与其特征向量x的变换理解为将矩阵A与另一个矩阵x的乘积。这是因为矩阵A与其特征向量x的变换等同于矩阵A的每一行与特征向量x的变换,从而矩阵之间的乘积可以表示为其特征值与特征向量的乘积。此时我们便能够分离出矩阵的特征值和特征值向量,并将其放在两个矩阵之中。具体过程如下:

通过上面等式,我们可以推出以下等式:

如果一个n×n维矩阵的n个特征向量均是线性无关的,则这个矩阵能够被对角化

观察上式,我们能够看到一个n×n维的矩阵可以由三个独立的矩阵构成,即一个由特征向量组成的n×n维的矩阵X和矩阵X的逆,以及一个由特征值组成的n×n维

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值