特征值分解和奇异值分解

特征值分解和奇异值分解比较

相同处

提取一个矩阵的重要特征,特征值分解是奇异值分解的一个特殊情况

不同处

面向的矩阵不同,特征值分解是面向对称矩阵;奇异值分解是任意矩阵都可以

特征值分解

特征值、特征向量

  1. 向量形式:

A v = λ v Av=\lambda v Av=λv

  1. 几何意义:

矩阵A与向量v相乘等于对向量进行一个线性变换(旋转和拉伸):但这里只是进行了拉伸,拉伸的情况用 λ \lambda λ表示。

特征值分解

A = Q Σ Q − 1 A=Q \Sigma Q^{-1} A=QΣQ1
Q是矩阵A的特征向量组成的矩阵, Σ \Sigma Σ 是对角阵,对角线上是特征值。这里的A一定是方阵

特征值分解例子

在这里插入图片描述
在这里插入图片描述
结果:将(1.2,0.8)和(0.8,1.2)进行分解后得到了特征值和特征向量: λ 1 = 2 , ( 1 , 1 ) T \lambda_1=2,(1,1)^T λ1=2,(1,1)T
λ 2 = 0.4 , ( 1 , − 1 ) T \lambda_2=0.4,(1,-1)^T λ2=0.4,(1,1)T

奇异值分解

ps:可针对于非方阵进行分解;对任意矩阵进行分解;

奇异值分解

svd

  1. 向量形式

M为一个任意的矩阵 m ∗ n m*n mn;
U是一个 m ∗ m m*m mm的方阵,U是一个正交矩阵,U里的正交向量被称为左奇异向量
Σ \Sigma Σ m ∗ n m*n mn,除了对角线的元素都为0,对角线上被称为奇异值,
V T V^T VT是V的转置矩阵, n ∗ n n*n nn,V是一个正交矩阵,V里的正交向量被称为右奇异向量

  1. 几何意义:

M 是可以分解成三个矩阵。V 表示了原始域的标准正交基,U表示经过 M 变换后的co-domain的标准正交基,Σ 表示了V 中的向量与u 中相对应向量之间的关系。

奇异值分解两种方法

在这里插入图片描述

奇异值分解例子

这里我们用一个简单的矩阵来说明奇异值分解的步骤。我们的矩阵A定义为:

在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

参考:
[1]Microstrong 公众号 机器学习中SVD总结

  • 1
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值