中心极限定理_数据分析中的中心极限定理是什么?

中心极限定理 (Central Limit Theorems: CLT) 是许多统计知识的基础,所以它非常非常重要!

不过好消息是它是一个非常简单的概念,来看一些例子就很快理解了。

至于什么是中心极限定理以及为什么它很重要,今天我们一次讲清楚!

5da5b047a724d1122b07c41b67ad8a4d.png  (理论上来说)中心极限定理指的是给定一个任意分布的总体。我每次从这些总体中随机抽取 n 个抽样,一共抽 m 次。 然后把这 m 组抽样分别求出平均值。  这些平均值的分布接近正态分布。 那么让我们从均匀分布开始。这个分布在0和1之间任意选择一个数值,它们被选中的概率都是相等的。因为概率都是相等的,因此该分布是均匀分布。 de46bef5892ffb3a4debe33704c03502.png 我们可以从这个均匀分布中随机抽取20个样本,然后计算这些样本的平均值,同时在右边,我们可以画出平均值的直方图。 90965b0473554e2870b48cded414c2aa.png 因为我们只有一个平均值,这样的直方图就很单调。但是我们再收集了10个样本并计算出10个平均值之后,直方图看起来就有点意思了。这是在采集20个样本并计算20个平均值之后的直方图。 ab9307996b5531143dfffc5370088e80.png 为了得到平均值的分布,我们可以增加样本的数量,多取一些样本平均值。在直方图上加上100个平均值后,很容易看出这些平均值是正态分布的。 8774ad3aa59a4e8bceec391646f9cd5b.png 但为了便于观察平均值是正态分布的,我们可以在图上叠加一个正态分布。平均值是正态分布的,这就是中心极限定理的核心内容。即使这些平均值是用均匀分布的数据计算出来的,平均值本身不是均匀分布的,而是正态分布的。 下面再举一个例子,这次我们从指数分布开始。 52be1175226689f20b3e766d538e7bc3.png 像上面一样,我们从这个指数分布中采取20个随机样本,我们可以计算出所有样本的平均值,并且在右边画出平均值的直方图。 a7649dd9d5c7a4f7449340bca858ccfc.png 在我们采集了10个样本并计算平均值之后,直方图就开始看起来就更有意义了。我们可以多选取几个样本,计算出它们的样本平均值。   9cd5e325af147a660e8497fc8c8ba1ae.png 在直方图上加上100个平均值后,我们可以看到它们是正态分布的。即使这些平均值是用指数分布的数据计算出来的,这些平均值却不是指数分布的。相反,这些平均值是正态分布的。 到目前为止,我们已经看到从均匀分布采集的样本计算出的平均值是正态分布的;同时从指数分布总体采集的样本中计算出的平均值也是正态分布的。 8a0fd35452a79665c9175423620331c9.png 以上是从不同的分布中取样本平均值。   d7f81f88be097b7a81c32a380e6fc143.png 以上是不同分布中样本平均值的分布。 好吧,事实证明你从什么样的分布开始并不重要,如果你从这些分布中采集样本,那么平均值都将是正态分布的。 感觉很酷!但是知道平均值是正态分布的有什么实际意义呢?但我们做一个实验时,我们并不总是知道我们的数据来自什么分布。对于这个情况,中心极限定理表示“Who cares???” 这是什么神仙操作? 82d058d46875c6e1aba1cdf5751ca0a7.gif 我们知道样本的平均值是正态分布的,所以我们不必太担心样本来源数据的分布情况。样本平均值的正态分布就可以帮助我们干很多事情了呀! 下面来了解一下。 我们可以用平均值的正 态分布来确定置信区间。 2c8d726ac55f10e6387aa3fc548731d6.png 通过t-检验,从中我们可以判断两个样本的平均值是否有差异。 f8df54ecb46b96c86819eedb05800ef0.png 通过方差分析,从中我们可以判断三个或更多样本的平均值是否存在差异。以及做几乎所有使用样本平均值的统计检验。 b4c5637286c575514c55ee73cab44ff7.png 注:为中心极限定理从根本上起作用,你必须能够从你的样本中计算出平均值。 Reference StatQuest(https://www.youtube.com/user/joshsatrmer/playlists) 关于上面提高的正态分布,置信区间,对于这些基本概念还不是很了解的小伙伴,可以查看我们前期的推送。在后面的推送中,我们将为大家详细解释t-检验和方差分析等原理,跟着我们一起解锁更多统计知识吧! 3c1e95f3e5f6cb141a72793eea203ade.png 定期不断更新统计和编程知识,欢迎关注我们的公众号WorldCode_ 我的编程,您的求职小推手! 15399e536a0f3489b11becce7dd79312.png
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页