随机过程-马尔可夫过程中,引入了维纳过程和广义维纳过程,在期权定价中,更是建立了几何布朗运动(根据不同形式,表示为伊藤过程或者广义维纳过程)为股价建模。但是对这个模型的深刻认识还不足,例如:
为什么要使用几何布朗运动为股价建模?
为什么维纳过程要使用正态分布?(维纳过程是布朗运动的数学模型)
为什么维纳过程的方差与时间有关?
要想回答以上问题,就需要引入中心极限定理,尤其是证明过程。
中心极限定理:如果一个变量y是大量小变量x共同作用的结果,那么y近似服从正态分布。
常见的例子,如果对一个试验采样N个结果(独立同步分布变量),获得一个均值x_mean,然后重复采样,每次都是采样N个结果,那么会获得很多个x_mean,此时x_mean近似服从正态分布。这里的N个结果就是类似于多个小变量x,均值x_mean就是多个小变量作用的结果y。
但是为什么中心极限定理会趋近于正态分布呢?简单来说就是利用傅里叶变换+泰勒级数做了值近似,只要N越大,近似误差越小。这里的N的含义:不同随机因素的数量,对应于独立同分布的采样数量。
而布朗运动(花粉运动)就是受到大量小粒子随机碰撞的结果,因此,布朗运动服从正态分布。但是维纳过程中不但有正态分布的概念,方差更是与时间有关,这个又作何解释呢?
个人理解:布朗运动的位移需要时间呈现。(位移=速度*时间)
在离散时间随机过程中,首先在离散的时间点采样(此时一次采样是多个变量共同作用的结果),然后观察采样的分布。如果离散的时间区间大小不一样,那么观察到的分布也是不同的(因为位移的大小与经历的时间有关)。拓展到连续时间随机过程中,方差就与时间产生了联系。
总结起来就是:大量小变量共同作用的结果服从正态分布(中心极限定理),因此维纳过程可以用来建模布朗运动,而股价也是受市场共同作用的结果,所以股价的变化也应该可以用维纳过程建模,但是最终股价使用的是几何布朗运动模型。
在几何布朗运动中,股价的变化率delta_S/S 服从广义维纳过程,用delta_S/S代表市场的观点,是背后的小变量共同作用的结果,而不是用delta_S表示共同作用的结果,一个直观的现象就是当我们投资时,我们更加倾向于谈论利率,而不是绝对值。
一种理解:市场观点(不同人对市场的不同看法,以及产生的后续行为)就是背后的小变量随机变量,共同作用的结果仍然是一种观点。
总结:
多个小变量共同作用的结果近似服从正态分布;
股价的变化率delta_S/S才是小变量共同作用的结果,因此产生了几何布朗运动;
引用:
中心极限定理的证明:https://mathworld.wolfram.com/CentralLimitTheorem.html