上期回顾
在高考范围内,弹簧或弹簧测力计都是被视为「轻质」的,也就是质量忽略不计。在这种情况下,弹簧或弹簧测力计两端出现拉力就一定是大小相等的,否则质量为零而合力不为零的话,加速度将无穷大,这是不可以出现的。弹簧测力计的示数等于其中一端的拉力大小,而弹簧的形变量则等于其中一端的拉力除以劲度系数。
如果出现两端拉力不相等的话,则我们不能再把弹簧或者弹簧测力计看作「轻质」的了。在这种情况下,弹簧的形变量又该如何计算呢?今天我们继续昨天的这个问题,进行详细的分析求解。
建立模型
所谓模型,简单地说,就是把模糊的实际问题,用定量的数值将其变成题目。
「题目」质量为、劲度系数为的弹簧放置在光滑水平面上。现用向右的拉力和向左的拉力分别作用在弹簧的右端和左端,已知,如图所示。弹簧长度稳定时,整体向右做匀加速直线运动,求此时弹簧的形变量。

分析求解
如上图所示,对于整段弹簧,根据牛顿第二定律
将弹簧平均分成段,每段的劲度系数为
对于从左端算起段,根据牛顿第二定律
从左端算起的第段的形变量为
弹簧的总形变量为
联立~式,可得
即弹簧的形变量相当于固定弹簧一端,另一端用这两个拉力的算术平均值大小的拉力拉动时的形变量。
写在后面
由于时间关系(现在已经很晚了),我没空细致输入求和计算的过程,同学们如果不会算,可以留言,点赞数量足够多,我就补写一下。
由上述推导可知,两端拉力不等的情况下,弹簧的形变量(弹簧测力计的示数),不能想当然等于小的拉力产生的形变量,也不能想当然等于大的拉力产生的形变量。
由于时间紧迫,输入错误之处,欢迎大家指出。
—— —— 买书还差1块钱