定义
共轭转置 Conjugate transpose
如果我们有一个复数矩阵A:
它的转置
共轭转置
共轭转置也经常记为:
Hermitian
Hermitian matrix 埃尔米特矩阵: 埃尔米特矩阵中每一个第i行第j列的元素都与第j行第i列的元素的复共轭。 也就是这个矩阵等于它的共轭转置。
复数我们知道
如果
如果我们有一个复数矩阵A,那么它需要等于它的共轭转置, 比如:
其实 Hermitian 也暗示了我们这个矩阵需要是方阵,至少我们转置之后的维度要跟原来的相等嘛。
正定 positive definite
一个 n × n 的实对称矩阵 M 是正定的,当且仅当对于所有的非零实系数向量z,都有
首先 实对称矩阵 M 并不一定正定的, 比如 M = -I :
对于复数,一个 n×n 的埃尔米特矩阵 M是正定的当且仅当对于每个非零的复向量z,都有
Hermitian 也当然不一定正定,我们可以有一些判定方法:
- 矩阵M的所有的特征值
都是正的
- ...
正交矩阵 orthogonal matrix
- 作为一个线性映射(变换矩阵),正交矩阵保持距离不变,所以它是一个保距映射,具体例子为旋转与镜射。
- 行列式值为+1的正交矩阵,称为特殊正交矩阵(special orthogonal group),它是一个旋转矩阵。
- 行列式值为-1的正交矩阵,称为瑕旋转矩阵。瑕旋转是旋转加上镜射。镜射也是一种瑕旋转。
- 所有 n × n 的正交矩阵形成一个群 O(n),称为正交群。亦即,正交矩阵与正交矩阵的乘积也是一个正交矩阵。
- 所有特殊正交矩阵形成一个子群SO(n),称为特殊正交群。亦即,旋转矩阵与旋转矩阵的乘积也是一个旋转矩阵。
酉矩阵 unitary matrix
酉矩阵/幺正矩阵:
就是 U 和其 共轭转置
酉(汉语拼音:yǒu)为地支的第十位,其前为申、其后为戌。酉月为农历八月,酉时为二十四小时制的17:00至19:00,在方向上指正西方。五行里酉代表金,阴阳学说里酉为阴。
说实话,这个字之前还没注意过它怎么念。unitary 作为 unit 的形容词,单位的、一元的,鉴于单位矩阵这个已经被 take 了,被翻成 幺正矩阵 也和不错,也大概有一元那么个意思。翻成酉矩阵大概也是文化人才能做到吧。
酉矩阵有很多很好的性质:
-
, 酉矩阵必定可逆,且逆矩阵等于其共轭转置:
-
, 酉矩阵 U 的所有特征值,其绝对值都是等于 1 的复数:
-
, 酉矩阵 U 行列式的绝对值也是 1
-
, 酉矩阵 U 不会改变两个复向量和的点积
- ...
正规矩阵 normal matrix
正规矩阵(英语:normal matrix)A 是与自己的共轭转置满足交换律的复系数方块矩阵,也就是说,A 满足
如果 A是实系数矩阵,则
正规矩阵的概念十分重要,因为它们正是能使谱定理成立的对象:矩阵 A 正规当且仅当它可以被成
总而言之,就是 正规矩阵 一定可以 特征分解/频谱分解/谱定理。
类比
不同种类的正规矩阵可以与各种复数建立对应的类比关系。比如:
- 可逆矩阵类似于非零的复数。
- 矩阵的共轭转置类似于复数的共轭
- 酉矩阵类似于模等于1的复数。
- 埃尔米特矩阵类似于实数。
- 埃尔米特矩阵中的正定矩阵类似于正实数。
- ....
分解
A = PLU
- 适用:方阵
- 分解: A = PLU, L 是 下三角阵, U 是 上三角阵,而 P 则是 permutation 行变换,单位矩阵变换可得, 如果没有行变换,A 就 直接分解成 LU. PLU 分解源自高斯消元法。
所有的方阵都可以写成 PLU 分解的形式。
Cholesky 分解
- 适用:方阵、hermitian、正定 positive definite
- 分解:
A 是正定的 Hermitian阵, L 是下三角矩阵,
QR分解
- 适用于: 列向量线性无关的矩阵 m x n, m ≥ n
- 分解:A = QR, Q 是 m x m 的 酉矩阵, 又叫做幺正矩阵(unitary matrix), R 是一个上三角矩阵
对于方阵的 QR 分解我比较熟悉
如果A不是方阵的话,那么三角矩阵只会占据一部分,下面会都是0, 所以经常也这样写 QR 分解:
where R1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q1 is m×n, Q2 is m×(m − n), and Q1 and Q2 both have orthogonal columns.
计算 QR 分解 我们可以用 Gram–Schmidt 或者 Householder reflections.
特征分解/频谱分解 Eigendecomposition / spectral decomposition.
炫云:线性代数22——特征值和特征向量zhuanlan.zhihu.com- 适用于: 具有线性独立特征向量(不一定是不同特征值)的方阵 A
- 分解:
Q 是 n x n 的矩阵, 第 i 列是 A 的 特征向量
一般来说,特征向量
这里我们虽然用了 Q 这个字母,但是我们并没有说它是一个正交阵,因为之前写特征分解的时候也提到过:
对于任意矩阵,其对应于不同特征值的特征向量线性无关,但不一定正交,而对于实对称矩阵,其对应于不同特征值的特征向量是相互正交的。
特征分解很容易推导:
理论基础
由代数基本定理(Fundamental theorem of algebra)我们知道
代数基本定理: 任何一个非零的一元n次复系数多项式,都正好有n个复数根(重根视为多个根)。
因式分解:
其中:
对每一个特征值
对每一个特征方程,都会有
这也是之前我们强调适用条件是 “具有线性独立特征向量(不一定是不同特征值)的方阵 A”,也就是看 n x n 的方阵 A 是否可以特征分解主要是看几何重数之和是否为 n 了。
实对称矩阵
对于任意的 n x n 实对称矩阵都有 n 个线性无关的特征向量,并且这些特征向量都可以正交单位化而得到一组正交且模为 1 的向量。所以:
其中 Q 为正交矩阵,
正规矩阵
一个复正规矩阵具有一组正交特征向量基,故正规矩阵可以被分解成
其中 U 是 酉矩阵。
特征分解对于理解线性常微分方程或线性差分方程组的解很有用。 例如,差分方程初始条件开始到,相当于,其中V和D是由A的特征向量和特征值形成的矩阵。 由于D是对角线,D 的 t 次幂只是涉及将对角线上的每个元素的 t 次幂 。 这与 A 的 t的次幂相比 ,更容易实现和理解,因为A通常不是对角线。
这里就直接点出了一个 特征分解的应用场景。 解 线性常微分方程 或 线性差分方程组。
奇异值分解
- 适用于: m x n 矩阵A
- 分解:
,是对角阵,对角上的元素称为A的奇异值 ,U 和 V 并不一定是唯一的。