自回归分布滞后模型 (ARDL)及 Stata 具体操作步骤

目录

一、引言

二、文献综述

三、理论原理

四、实证模型

五、程序代码及解释

六、代码运行结果


一、引言

自回归分布滞后模型(Autoregressive Distributed Lag Model,简称 ARDL)在时间序列分析中具有重要的地位,它能够同时捕捉变量之间的长期均衡关系和短期动态调整。在经济学、金融学等领域,ARDL 模型被广泛应用于研究变量之间的相互影响。

二、文献综述

在经济学领域,众多学者运用 ARDL 模型进行了深入的研究。例如,Pesaran 等人(1999)的研究表明,ARDL 模型在处理小样本和变量非平稳性方面具有显著优势。他们通过实证分析,证明了 ARDL 模型在预测经济变量之间的长期关系时表现出色。

Shrestha 和 Chowdhury(2007)运用 ARDL 模型研究了能源消费与经济增长之间的关系。他们发现,在长期内,能源消费对经济增长有着显著的正向影响,而在短期内,这种影响的程度和方向会有所变化。

在金融学方面,Narayan(2005)利用 ARDL 模型探讨了股票市场与宏观经济变量之间的动态关系。结果显示,宏观经济变量如利率、通货膨胀率等对股票市场的走势具有重要的影响,并且这种影响在不同的时间段表现出不同的特征。

此外,还有学者将 ARDL 模型应用于国际贸易领域。例如,Bahmani-Oskooee 和 Brooks(1999)研究了汇率波动与贸易收支之间的关系,发现汇率的变动在长期和短期内对贸易收支的影响存在差异,ARDL 模型能够有效地捕捉这种复杂的关系。

这些研究成果充分展示了 ARDL 模型在不同领域的广泛应用和强大的解释能力,为后续的研究提供了重要的参考和借鉴。

三、理论原理

自回归分布滞后模型(ARDL)是一种用于分析时间序列数据中变量之间动态关系的计量经济学模型。它结合了自回归(Autoregress

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值