sklearn 随机森林_随机森林Random Forest

本文介绍了如何利用Python中的sklearn库构建和应用随机森林模型,涵盖了从数据预处理到模型训练、评估的全过程。
摘要由CSDN通过智能技术生成

819f0b5e3930dd95e8aa755c90c53412.png
# Author: Leao
# Time: 2020.10.9

# 随机森林是一种集成学习算法, 可集成指定树的数量,有参数n_estimators
import sklearn
sklearn.__version__
sklearn.__name__
sklearn.__package__
dir(sklearn)

from sklearn import ensemble 
dir(ensemble)



from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split # 数据分割
from sklearn.datasets import load_wine #红酒数据集

# Load wine dataset加载红酒数据集
wine = load_wine()

wine.data
wine.data.shape
wine.target
wine.target.shape

# data split 红酒数据集分割
X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_size=0.3)

# Model模型
dtc = DecisionTreeClassifier(random_state=0) # 决策树分类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值