算术表达式求解背景_陪你复习微积分(四):求解多项式的极限问题

16975b5a4cf5a5bc011c40b1d7bb729d.png

上一篇

windsmoon:陪你复习微积分(三):极限导论​zhuanlan.zhihu.com
67fb9bc747d069da7454fc0b5d766160.png

概要

上一篇从直观理解的角度介绍了极限的概念,这一篇文章主要讲解如何求解多项式的极限,我会把不同的情况都举一个例子,更多的还需要读者自己去练习。

时的有理函数的极限

考虑极限:

其中

都是多项式,如第一章所讲,
是一个有理函数。对于有理函数的极限,首先,先把
代入到函数中,如果分母不为 0,那么极限值就是函数值。
上一章讲过,函数的极限和该点的函数值没有关系,但这里是可以这么代入的,在下一章中,复习了连续性的概念,就可以证明这种代入是没问题的。

举个例子:

现在把 x = -1 代人有理函数,结果为 -2,所以,-2 就是 x 趋近于 -1 时的极限值。

但是这种方法并不一定可行,考虑下面这个极限:

当你带入 x = 2 时,有理函数变为

,这种情况下我们称之为【不定式】。当分子分母都是 0 时,什么情况都有可能发生,无法直接从这里得到极限值。但可以通过在带入之前先进行因式分解,消除掉一些项,再带入,就可以得到结果了。

对于上面的例子,

,所以有:

通过因式分解,我们最终求出了这个有理函数的极限。

有一个需要注意的地方是,设

,我们虽然在上面通过因式分解把
转换成了
,但并不代表这两个函数是同一个函数,因为
在 x = 2 处是没有定义的,但是前面加上极限符号就可以相等了,因为极限值和具体某一处函数的值没有关系。

因式分解是非常重要的一个手段,所以除了二次多项式的因式分解之外,还有必要了解立方差的公式:

再看一个需要立方差因式分解并且需要把所有多项式都因式分解的例子:

如果将 x = 3 带入,会得到不定式,因此需要因式分解。分子部分可以利用立方差的公式分解成

,分母部分初看之下很复杂,但有一个明显的因子是
,所以先将其转为
,而其中的二次多项式也可以进一步分解得到
,得到:

这里也不能带入,因为带入还会得到不定式。由于我们需要 x 在 3 附近的极限值,所以要想办法把 x - 3 消掉,否则就会有不定式。现在显然已经可以消掉了,最终得到:

再带入,得到 3。

如果是分母为 0,分子不为 0 呢,在这种情况下,在对应的 x 值附近会有一条垂直渐近线,一共会有四种情况出现:

be30ad6f814c0d93d5cce58296ce0dcb.png
图片来自《普林斯顿微积分读本》图4-1

如果出现这种情况,只需要看一下

左右的函数值的正负即可。举个例子:

带入

,分母为 0,分子不为 0,所以就出现了上述四种情况之一。当 x 等于 1 时,分子为 -5,所以当 x 在 1 附近时,分子是负数,而分母里的 x 为 1,x 在 1 附近时一直是正数,但
在 x 小于 1 时为负数,大于 1 时为正数。所以可以得出结论,当 x 小于 1 时,分子为负数,分母为负数,结果为正数;当 x 大于 1 时,分子为负数,分母为正数,结果为负数。也就是说,这个有理函数的双侧极限不存在,左右极限分别为:

时的平方根的极限

考虑极限:

此时,直接带入会得到

型的不定式,因式分解也不起作用。
遇到这种平方根加上或者减去一个量的极限,可以考虑分子分母同时乘以其共轭表达式,在这个例子中为
,得到:

此时在将

带入,得到结果

时的有理函数的极限

考虑极限:

时,有理函数的极限值由分子分母的首项即最高次的项决定。这个其实很容易理解,因为当 x 不断增大时,最高次项增长数值要远比低次项增长的多的多,所以那些低次的项几乎可以忽略不计了。

举个例子:

求解方法是,分子先除以它的最高次项,再乘以最高次项,变成

,分母也先除以它的最高次项,再乘以它的最高次项,变成
,整个式子变为:

可能会有人对 0 是怎么来的感到奇怪,其实在之前的学习中应该已经能感觉到了。例如,

,当
时,这个式子显然等于 0。这里有一个定理:
对于任意的
,只要 C 是常数,就有:

我想这个式子不需要再证明了。由于有理函数的分子和分母都是分别处以其最高次项的,所以除了最高次项是 1 之外,其余都是上述定理的形式,所以最后结果就如上面的结果一样,只剩下外面乘以的分子和分母的最高次项了,所以这个例子的最终结果很容易就得到是 0。

遇到这种情况,只要按照上面说的方法,分子先除以它的最高次项,再乘以最高次项,分母也先除以它的最高次项,再乘以它的最高次项,然后再把乘以的最高次项拿出来,就很容易求解了。

这里写出一个可以直接用的结论:一般地,考虑极限

,其中 p 和 q 为多项式,则有:
  • 如果 p 的次数等于 q 的次数,则极限是有限的且非零;
  • 如果 p 的次数大于 q 的次数,则极限是
    或者
  • 如果 p 的次数小于 q 的次数,则极限是 0 。

时也成立。

时多项式型函数的极限

下面几个函数:

它们都带有分数次数或者 n 次根,虽然看起来是多项式,但他们都不是多项式。不过求解它们的极限的方法和上一节的类似,所以我们叫它们【多项式型函数】。

考虑极限:

分母是一个首项为

的多项式,因此可以用上一节的方法来表示为:

分子中根号里有

,当 x 很大时,表现的就好像
一样,如果对其进行开根号,则会得到
,依然是分子的最高次项,所以分子可以想象成
,按照上一节的方法,可以表示为:

转换之后,就可以按照上一节的方法进行求解,注意需要把除以的最高次项放到根号中:

如果把上面例子中的

变成
这时候就要注意,最高次就不是开根号出来的
了,而是
,其余的步骤和上面的完全一样。

还有一种特殊一些的情况,就是开根号后最高次项消掉了怎么办,来看一个例子:

开根号后变成了
,根号外面也有
,如果分子同时除以和乘以
会发现分子最后会变成 0,这是不对的,我们可以通过把这个极限的分子分母同时乘以分子的共轭表达式,转换成:

后面再按照之前说的方法求解即可,答案是

时的有理函数的极限

形如:

的极限,其中分子分母为多项式或多项式型函数。这个解法和之前的没什么不同,只是要注意符号的问题,因为这时候 x 是负数。例如求极限最终得到的式子是

,那么最后的极限是

还有一点需要注意的是,

开出来之后是
而不是
。在处理偶数次方根的时候也是同理:

不过,当 x 小于 0 时,

,这时候时没有负号的。因为 x 的四次方的算术平方根是 x 的平方,而 x 的平方一定是非负的 ,所以不能有负号。

总结一下就是:

如果
,并且有
,则需要在
之前加一个符号的唯一情形是,n 是偶的而 m 是奇的。

包含绝对值的函数的极限

考虑极限:

这里要求左极限,也就是说要从 0 左侧开始接近,也就是 x 为负数,所以变为

。如果是求右极限,显然结果是 1,也就是说这个式子的双侧极限不存在。大部分带绝对值的极限都可以按照符号来分别求解,这里就不做过多说明了。

结尾

这一章复习了常见的多项式的极限求解,下一章复习连续性和可导性相关的知识。

这个系列主要还是我自己用来记录复习笔记的,我会坚持写下去,如果对这个系列有什么建议,欢迎提出来~

感谢阅读,如果发现错误,还请通知我,谢谢~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值