普林斯顿微积分(四) 如何求解涉及多项式的极限问题


前言

上一节,主要是从概念的角度学习了极限。
现在,是时候来看一看求解极限的技巧了。


4.1 包含当 x -> a 时的有理函数的极限

  • 让我们以如下形式(有理函数)的极限开始: lim ⁡ x → a p ( x ) q ( x ) \lim\limits_{x \rightarrow a} \frac{p(x)}{q(x)} xalimq(x)p(x)
    • p 、 q p、q pq 都是多项式
    • a a a 是一个有限的数

举例

代入

  • lim ⁡ x → − 1 x 2 − 3 x + 2 x − 2 \lim\limits_{x \rightarrow -1} \frac{x^2-3x+2}{x-2} x1limx2x23x+2
  • 将 x = -1 代入,可得 ( − 1 ) 2 − 3 ( − 1 ) + 2 ( − 1 ) − 2 = 6 − 3 = − 2 \frac{(-1)^2-3(-1)+2}{(-1)-2} = \frac{6}{-3} = -2 (1)2(1)23(1)+2=36=2
  • 因为其分母不为零,因此 -2 就是极限值

不定式

  • lim ⁡ x → 2 x 2 − 3 x + 2 x − 2 \lim\limits_{x \rightarrow 2} \frac{x^2-3x+2}{x-2} x2limx2x23x+2
  • 因为代入 x = 2 回将式子简化为 0 0 \frac{0}{0} 00,这被称作 不定式
  • 使用代入法并得到零比零的形式,什么都可能发生:极限或许是有限的,极限或许是 ∞ 或 -∞,又或者,极限根本不存在。
  • 这时,我们使用 因式分解
    • lim ⁡ x → 2 x 2 − 3 x + 2 x − 2 = lim ⁡ x → 2 ( x − 2 ) ( x − 1 ) x − 2 = lim ⁡ x → 2 ( x − 1 ) \lim\limits_{x \rightarrow 2} \frac{x^2-3x+2}{x-2} = \lim\limits_{x \rightarrow 2} \frac{(x-2)(x-1)}{x-2} = \lim\limits_{x \rightarrow 2} {(x-1)} x2limx2x23x+2=x2limx2(x2)(x1)=x2lim(x1)
    • 得到极限为 1
立方差公式
  • a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3 - b^3 = (a - b)(a^2 + ab + b^2) a3b3=(ab)(a2+ab+b2)
  • lim ⁡ x → 3 x 3 − 27 x 4 − 5 x 3 + 6 x 2 \lim\limits_{x \rightarrow 3} \frac{x^3 - 27}{x^4 - 5x^3 + 6x^2} x3limx45x3+6x2x327
  • 应用立方差公式 lim ⁡ x → 3 x 3 − 27 x 4 − 5 x 3 + 6 x 2 = lim ⁡ x → 3 ( x − 3 ) ( x 2 + 3 x + 9 ) x 2 ( x − 3 ) ( x − 2 ) = lim ⁡ x → 3 ( x 2 + 3 x + 9 ) x 2 ( x − 2 ) = 3 \lim\limits_{x \rightarrow 3} \frac{x^3 - 27}{x^4 - 5x^3 + 6x^2} = \lim\limits_{x \rightarrow 3} \frac{(x-3)(x^2+3x+9)}{x^2(x-3)(x-2)} = \lim\limits_{x \rightarrow 3} \frac{(x^2+3x+9)}{x^2(x-2)} = 3 x3limx45x3+6x2x327=x3limx2(x3)(x2)(x3)(x2+3x+9)=x3limx2(x2)(x2+3x+9)=3
分母为 0 但分子不为 0
  • 不定式是形如 0 0 \frac{0}{0} 00,那如果分母为 0 但分子不为 0 会怎么样
  • 在这种情况下,将总会涉及一条垂直渐近线
    • 即,有理函数的图像在你感兴趣的 x 值会有一条垂直渐近线
    • 但是会有四类行为出现

请添加图片描述

  • 如何分辨出在处理这四种情形中的哪一种呢
    • 只需要查看一下 f(x) 在 x = a 两边的符号就可以了
举例
  • lim ⁡ x → 1 2 x 2 − x − 6 x ( x − 1 ) 3 \lim\limits_{x \rightarrow 1} \frac{2x^2 -x - 6}{x(x - 1)^3} x1limx(x1)32x2x6
  • 我们指定 f ( x ) = 2 x 2 − x − 6 x ( x − 1 ) 3 f(x) = \frac{2x^2 -x - 6}{x(x - 1)^3} f(x)=x(x1)32x2x6
  • 并观察当移到 x x x 1 1 1 的附近时会有什么情况发生
    • 首先要注意的是,当 x = 1 x = 1 x=1 时,分子 f ( x ) = ( 2 x 2 − x − 6 ) = − 5 f(x) = {(2x^2 -x - 6)} = -5 f(x)=(2x2x6)=5,因此,当在1的附近移动一下 x,它也保持为正的
    • 关键因子是 x ( x − 1 ) 3 {x(x - 1)^3} x(x1)3,当 x > 1 x > 1 x>1 时为正,而当 x < 1 x < 1 x<1 时为负
      • x > 1 ( − ) ( + ) ⋅ ( + ) = ( − ) x>1 \enspace \frac{(-)}{(+) · (+)} = (-) x>1(+)(+)()=(); x < 1 ( − ) ( + ) ⋅ ( − ) = ( + ) x < 1 \enspace \frac{(-)}{(+) · (-)} = (+) x<1(+)()()=(+)
  • 所以符合上图中第三幅图
    • 可以看到双侧极限并不存在,而单侧极限存在

4.2 当 x -> a 时的涉及平方根的极限

举例

  • lim ⁡ x → 5 x 2 − 9 − 4 x − 5 \lim\limits_{x \rightarrow 5} \frac{\sqrt{x^2 - 9} - 4}{x - 5} x5limx5x29 4
  • 代入 x = 5 x = 5 x=5,得到 0/0 型的不定式,而进行因式分解好像不太管用
  • 需要做的是,用 x 2 − 9 + 4 {\sqrt{x^2 - 9} + 4} x29 +4 和分子相乘并相除,这被称作 x 2 − 9 − 4 {\sqrt{x^2 - 9} - 4} x29 4共轭表达式
    • lim ⁡ x → 5 x 2 − 9 − 4 x − 5 = lim ⁡ x → 5 x 2 − 9 − 4 x − 5 × x 2 − 9 + 4 x 2 − 9 + 4 = lim ⁡ x → 5 x 2 − 25 ( x − 5 ) ( x 2 − 9 + 4 ) = lim ⁡ x → 5 x + 5 ( x 2 − 9 + 4 ) \lim\limits_{x \rightarrow 5} \frac{\sqrt{x^2 - 9} - 4}{x - 5} = \lim\limits_{x \rightarrow 5} \frac{\sqrt{x^2 - 9} - 4}{x - 5} \times \frac{\sqrt{x^2 - 9} + 4}{\sqrt{x^2 - 9} + 4} = \lim\limits_{x \rightarrow 5} \frac{x^2 - 25}{(x - 5)(\sqrt{x^2 - 9} + 4)} = \lim\limits_{x \rightarrow 5} \frac{x + 5}{(\sqrt{x^2 - 9} + 4)} x5limx5x29 4=x5limx5x29 4×x29 +4x29 +4=x5lim(x5)(x29 +4)x225=x5lim(x29 +4)x+5
    • 现在就可以代入 x = 5 x = 5 x=5

4.3 当 x -> ∞ 时涉及的有理函数的极限

  • 想求如下形式的极限: lim ⁡ x → ∞ p ( x ) q ( x ) \lim\limits_{x \rightarrow \infty} \frac{p(x)}{q(x)} xlimq(x)p(x)

  • 这有一个非常重要的多项式的性质: 当 x 很大时,首项决定一切

    • 也就是说,如果有一个多项式 p p p,那么,当 x x x 变得越来越大时, p ( x ) p(x) p(x) 的表现就好像只有它的首项存在一样
    • p L ( x p_L(x pL(x) 是 p p p 的首项
      • x x x 变得非常非常大时, lim ⁡ x → ∞ p ( x ) p L ( x ) = 1 \lim\limits_{x \rightarrow \infty} \frac{p(x)}{p_L(x)} = 1 xlimpL(x)p(x)=1
  • 为了证明上式,需要一个定理: 对于任意的 n > 0 n > 0 n>0,只要 C C C 是常数,就有 lim ⁡ x → ∞ C x n = 0 \lim\limits_{x \rightarrow \infty} \frac{C}{x^n} = 0 xlimxnC=0

  • 因此,当考虑极限 lim ⁡ x → ∞ p ( x ) q ( x ) \lim\limits_{x \rightarrow \infty} \frac{p(x)}{q(x)} xlimq(x)p(x)

    • 如果 p p p 的次数 = q q q 的次数,则极限是有限的且非零
    • 如果 p p p 的次数 > q q q 的次数,则极限是 ∞ 或 -∞
    • 如果 p p p 的次数 < q q q 的次数,则极限是 0

4.4 当 x -> ∞ 时的多项式型函数的极限

  • 考虑函数 f f f g g g h h h
    • f ( x ) = x 3 + 4 x 2 − 5 x 2 / 3 + 1 f(x) = x^3 + 4x^2 -5x^{2/3} + 1 f(x)=x3+4x25x2/3+1
    • g ( x ) = x 9 − 7 x 2 + 2 g(x) = \sqrt{x^9 - 7x^2 + 2} g(x)=x97x2+2
    • h ( x ) = x 4 − x 3 + x 2 − 2 x + 3 5 h(x) = x^4 - \sqrt{x^3 + \sqrt[5]{x^2 -2x +3}} h(x)=x4x3+5x22x+3
  • 这些都不是多项式,因为它们含有分数次数或 n 次根,但是它们看起来有点像多项式
  • 称它们为 多项式型函数

举例

第一种情况

  • lim ⁡ x → ∞ 16 x 4 + 8 + 3 x 2 x 2 + 6 x + 1 \lim\limits_{x \rightarrow \infty} \frac{\sqrt{16x^4 + 8 + 3x}}{2x^2 + 6x + 1} xlim2x2+6x+116x4+8+3x
    • 分母是一个带有首项 2 x 2 2x^2 2x2 的多项式,因此使用下式替换它
      • 2 x 2 + 6 x + 1 2 x 2 × ( 2 x 2 ) \frac{2x^2 + 6x + 1}{2x^2} \times (2x^2) 2x22x2+6x+1×(2x2)
    • 分子的首项为 16 x 4 16x^4 16x4,如果对其取平方根,会得到 4 x 2 4x^2 4x2,因此使用下式替换分子
      • 16 x 4 + 8 + 3 x 4 x 2 × ( 4 x 2 ) \frac{\sqrt{16x^4 + 8 + 3x}}{4x^2} \times (4x^2) 4x216x4+8+3x ×(4x2)
  • 把所有放在一起
    • lim ⁡ x → ∞ 16 x 4 + 8 + 3 x 2 x 2 + 6 x + 1 = lim ⁡ x → ∞ 16 x 4 + 8 + 3 x 4 x 2 × ( 4 x 2 ) 2 x 2 + 6 x + 1 2 x 2 × ( 2 x 2 ) \lim\limits_{x \rightarrow \infty} \frac{\sqrt{16x^4 + 8 + 3x}}{2x^2 + 6x + 1} = \lim\limits_{x \rightarrow \infty} \frac{\frac{\sqrt{16x^4 + 8 + 3x}}{4x^2} \times (4x^2)}{\frac{2x^2 + 6x + 1}{2x^2} \times (2x^2)} xlim2x2+6x+116x4+8+3x =xlim2x22x2+6x+1×(2x2)4x216x4+8+3x ×(4x2)
    • = lim ⁡ x → ∞ 16 x 4 + 8 16 x 4 + 3 x 4 x 2 2 x 2 + 6 x + 1 2 x 2 × 4 x 2 2 x 2 = lim ⁡ x → ∞ 1 + 8 16 x 4 + 3 4 x 1 + 6 2 x + 1 2 x 2 × 4 2 = 1 + 0 + 0 1 + 0 + 0 × 2 = 2 = \lim\limits_{x \rightarrow \infty} \frac{\sqrt{\frac{16x^4 + 8}{16x^4}} + \frac{3x}{4x^2}}{\frac{2x^2 + 6x + 1}{2x^2}} \times \frac{4x^2}{2x^2} = \lim\limits_{x \rightarrow \infty} \frac{\sqrt{1 + \frac{8}{16x^4}} + \frac{3}{4x}}{1 + \frac{6}{2x}+ \frac{1}{2x^2}} \times \frac{4}{2} = \frac{\sqrt{1 + 0} + 0}{1 + 0 + 0} \times {2} = 2 =xlim2x22x2+6x+116x416x4+8 +4x23x×2x24x2=xlim1+2x6+2x211+16x48 +4x3×24=1+0+01+0 +0×2=2

第二种情况

  • 我们对上式稍加修改, 求 lim ⁡ x → ∞ 16 x 4 + 8 + 3 x 3 2 x 2 + 6 x + 1 \lim\limits_{x \rightarrow \infty} \frac{\sqrt{16x^4 + 8} + 3x^3}{2x^2 + 6x + 1} xlim2x2+6x+116x4+8 +3x3
    • 分母方法不变
    • 分子的首项为 16 x 4 16x^4 16x4,如果对其取平方根,会得到 4 x 2 4x^2 4x2,但是更高次数的项 3 x 3 3x^3 3x3 将它淹没了
      • 因此必须使用下式替换分子
        • 16 x 4 + 8 + 3 x 3 3 x 3 × ( 3 x 3 ) \frac{\sqrt{16x^4 + 8} + 3x^3}{3x^3} \times (3x^3) 3x316x4+8 +3x3×(3x3)
  • 把所有放在一起
    • lim ⁡ x → ∞ 16 x 4 + 8 + 3 x 3 2 x 2 + 6 x + 1 = lim ⁡ x → ∞ 16 x 4 + 8 + 3 x 3 3 x 3 × ( 3 x 3 ) 2 x 2 + 6 x + 1 2 x 2 × ( 2 x 2 ) \lim\limits_{x \rightarrow \infty} \frac{\sqrt{16x^4 + 8} + 3x^3}{2x^2 + 6x + 1} = \lim\limits_{x \rightarrow \infty} \frac{\frac{\sqrt{16x^4 + 8} + 3x^3}{3x^3} \times (3x^3)}{\frac{2x^2 + 6x + 1}{2x^2} \times (2x^2)} xlim2x2+6x+116x4+8 +3x3=xlim2x22x2+6x+1×(2x2)3x316x4+8 +3x3×(3x3)
    • = lim ⁡ x → ∞ 16 x 4 + 8 9 x 6 + 3 x 3 3 x 3 2 x 2 + 6 x + 1 2 x 2 × 3 x 3 2 x 2 = lim ⁡ x → ∞ 16 x 2 + 8 9 x 6 + 1 1 + 6 2 x + 1 2 x 2 × 3 x 2 = 0 + 0 + 1 1 + 0 + 0 × lim ⁡ x → ∞ 3 x 2 = ∞ = \lim\limits_{x \rightarrow \infty} \frac{\sqrt{\frac{16x^4 + 8}{9x^6}} + \frac{3x^3}{3x^3}}{\frac{2x^2 + 6x + 1}{2x^2}} \times \frac{3x^3}{2x^2} = \lim\limits_{x \rightarrow \infty} \frac{\sqrt{\frac{16}{x^2} + \frac{8}{9x^6}} + 1}{1 + \frac{6}{2x}+ \frac{1}{2x^2}} \times \frac{3x}{2} = \frac{\sqrt{0 + 0} + 1}{1 + 0 + 0} \times \lim\limits_{x \rightarrow \infty} \frac{3x}{2} = \infty =xlim2x22x2+6x+19x616x4+8 +3x33x3×2x23x3=xlim1+2x6+2x21x216+9x68 +1×23x=1+0+00+0 +1×xlim23x=

第三种情况

  • 如果多项式根和外面最高次项相等会怎样呢?
  • lim ⁡ x → ∞ 4 x 6 − 5 x 5 − 2 x 3 27 x 6 + 8 x 3 \lim\limits_{x \rightarrow \infty} \frac{\sqrt{4x^6 - 5x^5} -2x^3}{\sqrt[3]{27x^6 + 8x}} xlim327x6+8x 4x65x5 2x3
    • 分母还好,可是分子在平方根符号下,表现就像是首项 4 x 6 \sqrt{4x^6} 4x6 ,也就是 2 x 3 2x^3 2x3,但是后面也有一个 − 2 x 3 -2x^3 2x3,抵消之后好像就什么都没有了
    • 这里我们采用共轭表达式
      • lim ⁡ x → ∞ 4 x 6 − 5 x 5 − 2 x 3 27 x 6 + 8 x 3 = lim ⁡ x → ∞ 4 x 6 − 5 x 5 − 2 x 3 27 x 6 + 8 x 3 × 4 x 6 − 5 x 5 − 2 x 3 4 x 6 − 5 x 5 + 2 x 3 \lim\limits_{x \rightarrow \infty} \frac{\sqrt{4x^6 - 5x^5} -2x^3}{\sqrt[3]{27x^6 + 8x}} = \lim\limits_{x \rightarrow \infty} \frac{\sqrt{4x^6 - 5x^5} -2x^3}{\sqrt[3]{27x^6 + 8x}} \times \frac{\sqrt{4x^6 - 5x^5} -2x^3}{\sqrt{4x^6 - 5x^5} +2x^3} xlim327x6+8x 4x65x5 2x3=xlim327x6+8x 4x65x5 2x3×4x65x5 +2x34x65x5 2x3

4.5 当 x -> -∞ 时的有理函数的极限

  • 花点时间来看看形如: lim ⁡ x → ∞ p ( x ) q ( x ) \lim\limits_{x \rightarrow \infty} \frac{p(x)}{q(x)} xlimq(x)p(x) 的极限

  • 之前使用的所有的原理在这里也使用

    • 当 x 是一个非常大的负数时,在任意和中的最高次数项仍然会占主导地位
    • x → − ∞ x \rightarrow -∞ x 时,只要 C C C 是常数,并且 n n n 是一个正整数, C / x n C/x^n C/xn 仍然趋于 0
  • 但有时候,只有在最后取极限的时候, x → ∞ x \rightarrow ∞ x x → − ∞ x \rightarrow -∞ x 是不同的

  • 还要注意,当 x → − ∞ x \rightarrow -∞ x 时, x 2 = − x \sqrt{x^2} = -x x2 =x

  • 即,如果 x < 0,并且想写 x 某次幂 = x m n \sqrt[n]{x^{\text 某次幂} = x^m} nx次幂=xm , 需要在 x m x^m xm 之前加一个负号的唯一的情形是,当 n n n 是偶的而 m m m 是奇的


4.6 包含绝对值的极限

  • 考虑: lim ⁡ x → 0 ∣ x ∣ x \lim\limits_{x \rightarrow 0} \frac{|x|}{x} x0limxx
  • f ( x ) = ∣ x ∣ / x f(x) = |x| / x f(x)=x∣/x
    • 首先,注意到 0 不可能在函数 f f f 的定义域中
    • x x x 为正时, ∣ x ∣ |x| x 这个量就是 x x x f ( x ) = 1 f(x) = 1 f(x)=1
    • 另一方面,如果 x x x 为负,那么 ∣ x ∣ = − x |x| = -x x=x f ( x ) = − 1 f(x) = -1 f(x)=1

请添加图片描述

  • 因此,求左极限,需要从左侧接近 x = 0 ,有 lim ⁡ x → 0 − ∣ x ∣ x = − 1 \lim\limits_{x \rightarrow 0^-} \frac{|x|}{x} = -1 x0limxx=1
  • 同时, lim ⁡ x → 0 + ∣ x ∣ x = 1 \lim\limits_{x \rightarrow 0^+} \frac{|x|}{x} = 1 x0+limxx=1
  • 由于左极限和右极限不相等,因此,双侧极限不存在, lim ⁡ x → 0 ∣ x ∣ x \lim\limits_{x \rightarrow 0} \frac{|x|}{x} x0limxx DNE
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
求解勒让德多项式的代码设计思想可以基于递推关系式展开。通过递推关系式,我们可以计算出勒让德多项式的前 $n$ 项,然后通过这些项的组合,得到任意次数的勒让德多项式。 具体的实现方法如下: 1. 定义递推关系式 勒让德多项式的递推关系式为: $$(n+1)P_{n+1}(x)=(2n+1)xP_n(x)-nP_{n-1}(x)$$ 其中 $P_0(x)=1$,$P_1(x)=x$。我们可以使用循环或递归的方法,计算出前 $n$ 项勒让德多项式的值。 2. 定义求解投影系数的函数 根据勒让德多项式的正交条件,我们可以计算出 $f(x)$ 在勒让德多项式 $P_n(x)$ 上的投影系数: $$a_n=\frac{\int_{-1}^1 f(x)P_n(x)dx}{\int_{-1}^1 P_n^2(x)dx}$$ 这个式子可以通过数值积分的方法计算得到。我们可以将其封装成一个函数,方便调用。 3. 定义勒让德多项式求解函数 通过递推关系式和投影系数的计算,我们可以得到勒让德多项式求解函数: ```python def legendre_poly(n, x): if n == 0: return 1 elif n == 1: return x else: return ((2*n-1)*x*legendre_poly(n-1, x)-(n-1)*legendre_poly(n-2, x))/n ``` 这个函数使用递归的方式,计算出给定次数 $n$ 的勒让德多项式在 $x$ 处的取值。 4. 使用勒让德多项式求解问题 通过上述方法,我们可以得到任意次数的勒让德多项式,并且可以使用它们求解一些数学问题,比如说: - 求解一元多项式的根 - 求解定积分的数值近似值 - 求解微分方程的数值解 总之,勒让德多项式是一种十分重要的数学工具,在科学计算和工程应用中有着广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值