对数正态分布_「BSM模型」股票价格对数正态分布的性质,lnE(ST)和E(lnST)关系

本文探讨股票价格遵循对数正态分布的特性,解释了μ、x和σ的含义,并通过数学推导分析了lnST与ST的关系,以及E(lnST)与lnE(ST)之间的定量和定性联系。证明过程中涉及伊藤引理和连续复利计算的收益率期望值。参考了约翰·赫尔的相关著作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于股票价格的对数正态分布,有几个重要性质,曲曲菜在本文中总结一下,并说明得出过程。

几个参数的说明

μ:股票每年的期望收益率。是投资者在很短一段时间内获得收益率的期望值(按年计),股票的漂移率除以期初股价。在非常小的时间区间上才有意义,是短时值的年化。本值与利率水平和股票的非系统性风险有关。本质是一个期望值

x:在长为T的一段时间内,以连续复利计算的股票的收益率。x=(ln(ST/S0))/T。

σ :股票价格每年的波动率。可以定义为连续复利股票在一年内所提供收益率的标准差。也可以定义为很短一段时间内获得收益率标准差的年化。

1. dST = μSTdt+σSdz = μSTdt+σSdz =

a77004b38d67951509c71c7e00c7994d.png

这个式子是我们根据变化规律,为股票价格建模的式子。

2. lnST-lnS0~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值