cramer定理_克莱姆(cramer)法则及定理简介.ppt

克莱姆(cramer)法则及定理简介.ppt

克莱姆(cramer)法则及定理简介 一. 克莱姆法则 二. 重要定理 三. 小结 可逆矩阵的判定及其求法 1、伴随矩阵法 定义 设A=(aij)为n阶矩阵,Aij为|A|中元素aij 的代数余子式, (i,j = 1, 2, …,n),则称矩阵 为A的伴随矩阵. 定理1 矩阵A可逆的充要条件是 证明 若 可逆, 必要性 充分性 ,且 按逆矩阵的定义得 证毕 奇异矩阵与非奇异矩阵的定义 推论1 奇异矩阵经过初等变换后仍是奇异矩阵, 非奇异矩阵经过初等变换后仍是非奇异阵. 证 设P是任何一个与A同阶的初等矩阵,则 |PA| = |P| |A| = |A| |P| = |AP| , 因此, 当|A| = 0时, |PA| = |AP| = 0 . 当|A| ≠ 0时, |PA| ≠0, |AP| ≠0 证毕. 推论2 证明 分块对角阵 其中Ai (i=1 , 2 , … , s)都是方阵,则A为分块对 角阵. 分块对角矩阵的行列式具有下述性质: 设线性方程组 则称此方程组为非 齐次线性方程组; 此时称方程组为齐次线性方程组. 非齐次与齐次线性方程组的概念 一、克莱姆法则 如果线性方程组 的系数行列式不等于零,即 其中 是把系数行列式 中第 列的元素用方程 组右端的常数项代替后所得到的 阶行列式,即 则方程组有唯一解,其解为: 证明 在把 个方程依次相加,得 由代数余子式的性质可知, 于是 当 时,方程组 有唯一的一个解 由于方程组 与方程组 等价, 故 也是方程组的 解. 例1 给定平面上三个点 且对称轴与 y 轴平行的抛物线方程. 解 因抛物线的对称轴与 y 轴平行,故可设其方程为 于是有 ,求过这三点 此方程的系数行列式是范德蒙得行列式,而 所以方程组有唯一解, 又 故 即所求的抛物线方程为 重要定理 定理1 如果线性方程组 的系数行列式 则 一定有解,且解是唯一的 . 定理2 如果线性方程组 无解或有两个不同的 解,则它的系数行列式必为零. 二.齐次线性方程组有非零解的条件 定理3 如果齐次线性方程组(2)的系数行列式 则它只有零解. 定理4 如果齐次线性方程组 有非零解,则它 的系数行列式必为零. 例2 问 取何值时,齐次方程组 有非零解? 解 齐次方程组有非零解,则 所以 或 时齐次方程组有非零解. 因 1. 用克莱姆法则解方程组的两个条件 (1)方程个数等于未知量个数; (2)系数行列式不等于零. 2. 克莱姆法则建立了线性方程组的解和已知的系 数与常数项之间的关系.它主要适用于理论推导. 三、小结 思考题 当线性方程组的系数行列式为零时,能否用克莱姆 法则解方程组?为什么?此时方程组的解为何? 思考题解答 不能,此时方程组的解为无解或有无穷多解.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: rao cramer定理,又称为Cramér-Rao不等式,是数理统计学中的一个重要定理,用于估计量精确性的界限。 根据rao cramer定理,当我们对一个未知参数进行估计时,估计量的方差必须大于或等于理论上的最小方差,这个最小方差也被称为Cramér-Rao下界。 关于rao cramer定理,主要有以下几个关键点: 首先,估计量的偏差应该为零。这意味着估计量的期望值应该等于真实参数的值,换句话说,估计量应该无偏。 其次,估计量的方差应该尽可能小。方差表示了估计量在不同观测下的变异程度,方差越小,估计值越稳定,越接近真实值。 最后,估计量应该是连续的函数。换言之,估计量的值应该能够根据样本的观测结果进行连续调整。 通过rao cramer定理,我们可以比较不同估计量的有效性。如果一个估计量的方差达到了Cramér-Rao下界,就可以说这个估计量是最有效的估计量。 总结起来,rao cramer定理提供了一个估计量精确性的界限,帮助我们评估不同估计量的优劣。这个定理的应用范围广泛,不仅在统计学中有重要意义,在信号处理、通信工程等领域也有广泛应用。 ### 回答2: rao cramer定理是统计学中的一个重要定理,用来描述参数估计的精确性和有效性。这个定理是由印度统计学家C.R. Rao和英国统计学家Hilda Cramer在20世纪提出的。 rao cramer定理的核心思想是针对一个参数的无偏估计量,其方差的下限由Fisher信息量来决定。Fisher信息量衡量了总体概率密度函数关于参数的变化情况,可以看作是数据中所包含的关于参数的信息量。rao cramer定理指出,任何无偏估计量的方差都不小于Fisher信息量的倒数,即方差的下限是Fisher信息量的逆。 这个定理提供了评估任何统计学参数估计的下限,它告诉我们在给定样本大小的情况下,我们可以测量参数的精确程度。如果一个无偏估计量的方差接近Fisher信息量的逆,那么该估计量被认为是高效的。相反,如果它的方差远远大于Fisher信息量的逆,那么该估计量的效果就不好。 rao cramer定理在统计学中应用广泛,特别是在假设检验和置信区间的构建中。它帮助我们选择最佳的估计方法,并评估其准确性和稳定性。同时,它也指导着统计学家在设计实验和收集数据时的策略,以确保所得到的结果具有较高的可信度和可靠性。总之,rao cramer定理为统计学的发展提供了重要的理论基础和工具。 ### 回答3: rao cramer定理是统计学中的一个重要定理,它与参数估计的精确度有关。它的全称是Cramer-Rao 不等式,也称为Rao-Cramer定理。 Rao-Cramer定理给出了在一定条件下,参数估计的方差的下界。具体而言,对于一个充分统计量T,如果针对总体参数θ的任意无偏估计量U,通过计算U的方差,我们可以得到一个下界,即柯尔摩戈洛夫-施韦科不等式。而Rao-Cramer定理则可以得到柯尔摩戈洛夫-施韦科不等式的一个特例。 Rao-Cramer定理的表述如下:设X1, X2, ..., Xn是从具有密度函数f(x;θ)的总体中取出的一个简单随机样本,其中θ是未知参数,而L(θ)是θ的无偏估计量,则有L(θ)的方差的下界满足:Var(L(θ)) ≥ [1 / n * E{ (∂/∂θ log f(x;θ) )^2 } ]^-1。 换句话说,Rao-Cramer定理说明了无偏估计量的方差不能小于该总体密度函数的对数的二阶导数的期望的倒数除以样本量n。 这个定理的重要性在于,它给出了判断一个无偏估计量的方差是否达到了下界的方法,同时也有助于我们设计更有效、更精确的参数估计方法。 总之,Rao-Cramer定理为我们提供了一种判断无偏估计方差下界的方法,对于统计学的推断和参数估计有着重要的指导作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值