python损失函数实现_PaddlePaddle实现Focal Loss损失函数

在网上找了一下,有一位博主尝试写了一个,但是没有实现类别平衡。于是我继续了这位博主的工作,添加了类别平衡。在我的数据集上表现的很好。

这几天做一个图像分类的项目,每个标签的训练集数量差别很大,分类难易程度差别也很大,于是想用Focal Loss试一下,但是PaddlePaddle的函数库没有实现这个损失函数。

Focal Loss的理解可以看这一篇文章。

首先看一下使用Focal Loss之前的模型训练效果,分类很不平衡。

PaddlePaddle实现Focal Loss可以使用现有的op组合,也可以自己写一个op,后者难度较大,今天先使用现有的op,以后有时间再写op吧。

def focal_loss(pred, label, gama, alpha):

one_hot = paddle.fluid.layers.one_hot(label, train_parameters['class_dim'])

cross_entropy = one_hot * fluid.layers.log(pred)

cross_entropy = fluid.layers.reduce_sum(cross_entropy, dim=-1)

weight = -1.0 * one_hot * paddle.fluid.layers.pow((1.0 - pred), gama)

weight = fluid.layers.reduce_sum(weight, dim=-1)

ax = alpha * one_hot

alph = fluid.layers.reduce_sum(ax, dim=-1)

return alph * weight * cross_entropy1

2

3

4

5

6

7

8

9

gama参数一般取2;

alpha参数的实现:

定义占位符

img = fluid.data(name='img', shape=[-1] + train_parameters['input_size'], dtype='float32')

label = fluid.data(name='label', shape=[-1, 1], dtype='int64')

falpha = fluid.data(name='falpha', shape=[-1,train_parameters['class_dim']], dtype='float32')

feeder = fluid.DataFeeder(feed_list=[img, label, falpha], place=place)1

2

3

4

构建falpha参数

def get_focal_alpha():

alpha = []

value_count = train_parameters["label_img_count"] # 每个标签的训练集图片数量

image_count = train_parameters["image_count"] # 训练集图片总数量

for i in range(value_count.shape[0]):

alpha.append(((image_count-value_count[i])/image_count*1000-997)/3)

return alpha

focal_alpha = np.array(get_focal_alpha(),dtype=np.float32)1

2

3

4

5

6

7

8

在训练模型的每一个batch,将原来的feed数据添加falpha之后feed进去

# 这里的data是batch_reader()得到的数据

new_data = []

for i in range(len(data)):

new_item = data[0] + (focal_alpha,)

new_data.append(new_item)

del data[0]

loss, acc1, pred = exe.run(main_program,

feed=feeder.feed(new_data),

fetch_list=train_fetch_list)1

2

3

4

5

6

7

8

9

使用Focal Loss之后的分类结果

好的,以下是使用Pytorch实现Focal Loss损失函数代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, gamma=2, alpha=None, size_average=True): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha if isinstance(alpha, (float, int)): self.alpha = torch.Tensor([alpha, 1 - alpha]) if isinstance(alpha, list): self.alpha = torch.Tensor(alpha) self.size_average = size_average def forward(self, input, target): if input.dim() > 2: input = input.view(input.size(0), input.size(1), -1) # N,C,H,W => N,C,H*W input = input.transpose(1, 2) # N,C,H*W => N,H*W,C input = input.contiguous().view(-1, input.size(2)) # N,H*W,C => N*H*W,C target = target.view(-1, 1) logpt = F.log_softmax(input) logpt = logpt.gather(1, target) logpt = logpt.view(-1) pt = logpt.data.exp() if self.alpha is not None: if self.alpha.type() != input.data.type(): self.alpha = self.alpha.type_as(input.data) at = self.alpha.gather(0, target.data.view(-1)) logpt = logpt * at loss = -1 * (1 - pt) ** self.gamma * logpt if self.size_average: return loss.mean() else: return loss.sum() ``` 其中,`gamma`是超参数,控制着难易样本的权重,一般默认为2;`alpha`是类别权重系数,可以为None、float、int或list类型;`size_average`控制是否对每个样本的损失求平均,默认为True。 使用时,只需在训练代码调用损失函数即可: ```python loss_fn = FocalLoss(gamma=2, alpha=[0.25, 0.75]) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(num_epochs): for images, labels in train_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) loss = loss_fn(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值