focal loss函数曲线-python

本文探讨了focal loss函数,它通过调节因子(1-pi)γ解决分类任务中难易样本不平衡问题。γ参数影响难样本的权重,α用于平衡正负样本。内容包括focal loss的数学原理,图像展示不同γ值下损失函数的衰减,并给出了Python实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

focal loss函数曲线-python

focal loss函数

焦点损失函数在原交叉熵损失函数的基础上,添加了一个调制因子(1-pi)γ,可以用来调整在少量困难样本和大部分容易样本间的均衡性。调制因子中γ的表示可调聚焦参数。此外,α为平衡因子,用以均衡正负样本本身的数量比例。焦点损失函数的计算方式如下所示:
focal loss
当预测值越接近样本真值时,pi的值趋近于1(即样本为简单样本),而调制因子趋于0,不会影响损失权值的变化。当发生误分类时,pi的值比较小(即样本为难样本),调制因子趋近于1,会减小损失的权重值。而交叉熵损失函数可以看作焦点损失函数的一种特例,即平衡程度为零的损失函数。

focal loss图像

不同γ值下的损失衰减如图所示
在这里插入图片描述

focal loss代码

# coding:utf-8

import matplotlib.pyplot as plt
import numpy as np
from numpy.lib.scimath import logn
from math import e
import matplotlib as mpl

# 防止中文乱码问题
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

mpl.rcParams['figure.figsize'] = [9, 8]  # for square canvas
x = np.arange(0, 1, 0.01)  # 创建100个0到6之间的等比数列

# plt.plot(x,np.log(x)/np.log(0.5),'y-', linewidth=2, label=u'log0.5(x)')#log0.5(x)
plt.plot(x, -logn(e, x), 'b-', linewidth=2, label=u'γ= 0')  # loge(x)
plt.plot(x, -logn(e, x) * (1 - x), 'r-', linewidth=2, label=u'γ= 1')
plt.plot(x, -logn(e, x) * pow((1 - x), 2), 'g-', linewidth=2, label=u'γ= 2')
plt.plot(x, -logn(e, x) * pow((1 - x), 3), 'y-', linewidth=2, label=u'γ= 3')
plt.plot(x, -logn(e, x) * pow((1 - x), 4), 'c-', linewidth=2, label=u'γ= 4')
# plt.plot(x,np.log(x)/np.log(5))
# plt.plot(x,logn(5,x),'g-',linewidth=2, label=u'loge(x)') #等于求log5(X)
# plt.plot(x,np.log10(x),'r-',linewidth=2, label=u'loge(x)')#log10(x)

plt.axis([0, 1, 0, 5.])  # 指定画图板的长宽

plt.xticks(size=20)
plt.yticks(size=20)

plt.ylabel("loss", fontdict={'weight': 'normal', 'size': 20})
plt.xlabel("pt", fontdict={'weight': 'normal', 'size': 20})
plt.legend(loc='upper right', prop={'size': 20})  # 图例的位置
# plt.grid(True)#需要网格
plt.show()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荒月交午

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值