摘要:
数据挖掘、机器学习和推荐系统中的评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)简介。
在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。
业内目前常常采用的评价指标有准确率(Precision)、召回率(Recall)、F值(F-Measure)等,下图是不同机器学习算法的评价指标。下文讲对其中某些指标做简要介绍。
本文针对二元分类器! 本文针对二元分类器!! 本文针对二元分类器!!!
对分类的分类器的评价指标将在以后文章中介绍。
在介绍指标前必须先了解“混淆矩阵”:
混淆矩阵
True Positive(真正,TP):将正类预测为正类数
True Negative(真负,TN):将负类预测为负类数
False Positive(假正,FP):将负类预测为正类数误报 (Type I error)
False Negative(假负,FN):将正类预测为负类数→漏报 (Type II error)