正定性和主子式的关系(借助正定阵的主元特性进行说明)
只保留A的前m行和前m列,得到的新矩阵叫A的m阶主子矩阵,其行列式叫主子式.
以前我有一个错误的思路说明这个问题:
利用矩阵A的特征值分解,通过分块矩阵的方式表示矩阵的主子阵,
再利用A的特征值,表示主子式的值
因为有 A=P*D*inv(P)
去掉A的第k行和第k列,相当于去掉P的第k行的同时去掉D的第k行,第k列.
进一步对A同时去掉行号列号相同的多行多列,相当于对V,P做相应的销行销列变化,
设新的A,D,P,分别表示为B,C,W
则有 B=W*C*W'.
进而有 |B|=|W|*|C|*|W'|=|W|^2*|C|
上式说明A的剩余矩阵B的行列式的符号完全和D中剩余特征值的积(|C|)的符号相同.
错误原因:实际上无法通过分块矩阵表示主子阵
正确说明思路
利用矩阵A的主元分解,同样利用分块的方式表示矩阵的主子阵.
因为 x'Ax = x'C*BAB'*C'x =x'CFC'x,中的B,C都是三角阵,
在取B,C的主子阵后,进行运算可以正确得到A的主子阵.
即,通过可以通过对主元分解的各个矩阵进行分块从而正确表示A的主子阵
再利用主元值表示主子式的值.即可说明主子式和矩阵正定的关系.
但是直接这样说明比较麻烦.
可以直接应用主元公式(矩阵A的第n个主元为相邻的主子式之商 |An|/|An-1|)
因为正定阵主元都大于0,
所以 A0, |An|/|An-1| (||是行列式,不是绝对值)都大于0
即各阶主子式 A0 到 |An| 都大于0
反之 如果各阶主子式 A0 到 |An| 都大于0
也可以得到 A0, |An|/|An-1| (||是行列式,不是绝对值)都大于0
即 A的各个主元也都大于0 ,A是正定的
A的各阶主子式大于0 ⇔ A为正定矩阵
A的奇数阶主子式小于0,偶数阶主子式大于0 A的所有特征值小于0⇔ A为负定矩阵
其他思路
因为A正定,所以无论x如何取值都有x'Ax >0
令向量x的某些位置恒为0,上式依然满足
再进行x'Ax运算时,可以看到A中与x非零位置进行运算的部分,就是A的主子式部分
即A的任何主子阵都正定
这个思路只能说明必要性(A正定推主子矩阵正定),不易说明充分性
因为顺序主子阵和原矩阵A共用相同主元.所以主子阵继承A的(正)定性.
同理因为A的主元都能在顺序主子阵的主元中找到,所以顺序主子阵都是正定的话,A正定
这个思路只能说明顺序主子阵