差分进化算法_R语言使用随机技术差分进化算法优化的Nelson-Siegel-Svensson模型

原文链接:

拓端数据科技 / Welcome to tecdat​tecdat.cn
2d68b105dc40fc4055ffc4b9f8911959.png

1引言

在本教程中,我们将研究如何将Nelson-Siegel-Svensson(NSS)模型拟合到数据。由于我们将使用随机技术进行优化,因此我们应该重新运行几次。变量nRuns设置示例重启的次数。

> set.seed(112233)

2将NS模型拟合到给定的零利率

NS模型

我们使用给定的参数betaTRUE创建“真实”的收益曲线yM。付款时间(以年为单位)在向量tm中。


  1. > tm <- c(c(1, 3, 6, 9)/12, 1:10)

  2. > betaTRUE <- c(6, 3, 8, 1)

  3. > yM <- NS(betaTRUE, tm)

  4. > par(ps = 11, bty = "n", las = 1, tck = 0.01, mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

  5. > plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

c1971116417a3213ceeae92b3bbfebb9.png

目的是通过这些点拟合平滑曲线。我们从目标函数OF开始。它有两个参数:param和list数据(包含所有其他变量)。返回观察到的(“市场”)收益率yM的向量与参数param的模型收益率之间的最大绝对差。

我们添加了一个粗略而有效的约束,以防止导致“ NA”值的参数值:目标函数返回较大的正值。我们将其最小化,因此产生NA值的参数被标记为不良。在第一个示例中,我们将数据设置如下:


  1. > data <- list(yM = yM, tm = tm, model = NS, ww = 0.1, min = c( 0,-15,-30, 0), max = c(15, 30, 30,10))

我们添加了一个模型(在本例中为NS),该模型描述了从参数到收益曲线的映射,以及向量min和max,我们稍后将其用作约束。ww是惩罚权重,如下所述。

OF将采用候选解决方案参数,通过data $ model将此解决方案转换为收益,并将这些收益与yM进行比较,这意味着要计算最大绝对差。


  1. > OF(param2, data) ## ... gives a postive number

  2. [1] 0.97686

我们还可以根据收益率曲线比较解决方案。


  1. > par(ps = 11, bty = "n", las = 1, tck = 0.01, mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

  2. > plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

  3. > lines(tm, NS(param1, tm), col = "blue")

  4. > lines(tm, NS(param2, tm), col = "red")

  5. > legend(x = "topright", legend = c("true yields", "param1", "param2"), col = c("black", "blue", "red"), pch = c(1, NA, NA), lty = c(0, 1, 1))

5803ef7fd850469cd893ca11f430db41.png

我们通常希望获取参数,以便满足某些约束条件。我们通过惩罚函数将它们包括在内。

我们已经有了数据,因此让我们看看该函数对违反约束的解决方案有何作用。假设我们有三个解的总体mP。


  1. > param1 <- c( 6, 3, 8, -1)

  2. > param2 <- c( 6, 3, 8, 1)

  3. > param3 <- c(-1, 3, 8, 1)

  4. > mP <- cbind(param1,param2,param3)

  5. > rownames(mP) <- c("b1","b2","b3","lambda")

  6. > mP

  7. param1 param2 param3

  8. b1 6 6 -1

  9. b2 3 3 3

  10. b3 8 8 8

  11. lambda -1 1 1

第一个和第三个解决方案违反了约束。在第一个解决方案中,λ为负。在第三个解中,β1为负。


  1. > penalty(mP,data)

  2. param1 param2 param3

  3. 0.2 0.0 0.2

参数ww控制了我们的惩罚程度。


  1. > data$ww <- 0.5

  2. > penalty(mP,data)

  3. param1 param2 param3

  4. 1 0 1


对于有效的解决方案,惩罚应为零。


  1. > penalty(mP, data)

  2. param1 param2 param3

  3. 0 0 0


请注意,惩罚会立即生效;无需遍历解决方案。
这样我们就可以进行测试了。我们首先定义DE的参数。请特别注意,我们传递了惩罚函数,并将loopPen设置为FALSE。


然后使用目标函数OF,列表数据和列表算法调用DEopt。


  1. > sol <- DEopt(OF = OF, algo = algo, data = data)

差异演化。
最佳解的目标函数值为0;
最终人群中OF的标准偏差为3.0455e-16。
为了检查目标函数是否正常工作,我们将最大误差与返回的目标函数值进行比较–它们应该相同。


  1. > max( abs(data$model(sol$xbest, tm) - data$model(betaTRUE, tm)) )

  2. [1] 0

  3. > sol$OFvalue

  4. [1] 0


作为基准,我们从stats包运行函数nlminb。
如果发现它的性能优于DE,我们将有力地表明我们的DE实现存在问题。
我们使用一个随机起始值s0。


  1. > s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

  2. > sol2 <- nlminb(s0, OF, data = data,

  3. lower = data$min,

  4. upper = data$max,

  5. control = list(eval.max = 50000L,

  6. iter.max = 50000L))


同样,我们比较返回的目标函数值和最大误差。


  1. > max( abs(data$model(sol2$par, tm) - data$model(betaTRUE,tm)) )

  2. [1] 1.5787e-07

  3. > sol2$objective

  4. [1] 1.5787e-07


为了比较我们的两个解(DE和nlminb),我们可以将它们与真实的收益率曲线一起绘制。但是必须强调的是,这两种算法的结果都是随机的:对于DE,因为它故意使用随机性;在nlminb的情况下,因为我们随机设置了起始值。为了获得更有意义的结果,我们应该多次运行这两种算法。为了降低插图的构建时间,我们只运行两种方法一次。


  1. > plot(tm, yM, xlab = "maturities in years",

  2. ylab = "yields in %")

  3. > algo$printDetail <- FALSE

  4. > for (i in seq_len(nRuns)) {

  5. sol <- DEopt(OF = OF, algo = algo, data = data)

  6. lines(tm, data$model(sol$xbest,tm), col = "blue")

  7. s0 <- algo$min + (algo$max-algo$min) * runif(length(algo$min))

  8. sol2 <- nlminb(s0, OF, data = data,

  9. lower = data$min,

  10. upper = data$max,

  11. control = list(eval.max = 50000L,

  12. iter.max = 50000L))

  13. lines(tm,data$model(sol2$par,tm), col = "darkgreen", lty = 2)

  14. }

  15. > legend(x = "topright", legend = c("true yields", "DE", "nlminb"),

  16. col = c("black","blue","darkgreen"),

  17. pch = c(1, NA, NA), lty = c(0, 1, 2))

0478373e4bb162f70fc3ccd0f644e6a1.png

毫无疑问,DE似乎通常只有一条曲线:实际上有nRuns 条线,但是它们是相互叠加的。


其他约束


NS(和NSS)模型的参数约束是要确保所得的零利率为非负数。但实际上,它们不能保证正利率。


  1. > plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

  2. > abline(h = 0)

a685bc41236d6ebefd01b5535f17ccc2.png

这确实是一个虚构的示例,但尽管如此,我们仍可能希望包括针对此类参数向量的约束措施:我们可以仅包含一个所有速率均大于零的约束条件。
同样,这可以通过惩罚函数来完成。


校验:


  1. > penalty2(c(3, -2, -8, 1.5),data)

  2. [1] 0.86343


此惩罚函数仅适用于单个解决方案,因此实际上将其直接写入目标函数最简单。


因此,就像一个数值测试:假设上述参数为真,而利率为负。


  1. > algo$pen <- NULL; data$yM <- yM; data$tm <- tm

  2. > par(ps = 11, bty = "n", las = 1, tck = 0.01,

  3. mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

  4. > plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

  5. > abline(h = 0)

  6. > sol <- DEopt(OF = OFa, algo = algo, data = data)

  7. > lines(tm,data$model(sol$xbest,tm), col = "blue")

  8. > legend(x = "topleft", legend = c("true yields", "DE (constrained)"),

  9. col = c("black", "blue"),

  10. pch = c(1, NA, NA), lty = c(0, 1, 2))

2f2dc0194b8fdf50bb66ce05de5b118c.png

3将NSS模型拟合到给定的零利率

如果要改用NSS模型,则几乎不需要更改。我们只需要向目标函数传递一个不同的模型。下面是一个示例。同样,我们修复了真实参数并尝试恢复它们。
列表数据和算法与以前几乎相同;目标函数保持完全相同。
仍然需要运行算法。(同样,我们检查返回的目标函数值。)


  1. > sol <- DEopt(OF = OF, algo = algo, data = data)

  2. > max( abs(data$model(sol$xbest, tm) - data$model(betaTRUE, tm)) )

  3. [1] 7.9936e-15

  4. > sol$OFvalue

  5. [1] 7.9936e-15


我们将结果与nlminb进行比较。
最后,我们比较了几次运行所得的收益率曲线。


  1. > par(ps = 11, bty = "n", las = 1, tck = 0.01,

  2. mgp = c(3, 0.2, 0), mar = c(4, 4, 1, 1))

  3. > plot(tm, yM, xlab = "maturities in years", ylab = "yields in %")

  4. > for (i in seq_len(nRuns)) {

  5. sol <- DEopt(OF = OF, algo = algo, data = data)

  6. lines(tm, data$model(sol$xbest,tm), col = "blue")

  7. s0 <- algo$min + (algo$max - algo$min) * runif(length(algo$min))

  8. sol2 <- nlminb(s0, OF, data = data,

  9. lower = data$min,

  10. upper = data$max,

  11. control = list(eval.max = 50000L,

  12. iter.max = 50000L))

  13. lines(tm, data$model(sol2$par,tm), col = "darkgreen", lty = 2)

  14. }

  15. > legend(x = "topright", legend = c("true yields", "DE", "nlminb"),

  16. col = c("black","blue","darkgreen"),

  17. pch = c(1,NA,NA), lty = c(0,1,2), bg = "white")

261304bc44abe9eec16ff99440fb4a6c.png

参考文献


关于数值优化中“良好起始值”的注释,2010年。http://comisef.eu/?q = working_papers

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值