drj御用programmer
码龄3年
  • 58,808
    被访问
  • 38
    原创
  • 165,329
    排名
  • 74
    粉丝
关注
提问 私信

个人简介:程序人生也需要有punchline

  • 毕业院校: 首都经济贸易大学
  • 加入CSDN时间: 2019-10-10
博客简介:

weixin_45734379的博客

查看详细资料
  • 3
    领奖
    总分 373 当月 20
个人成就
  • 获得126次点赞
  • 内容获得86次评论
  • 获得591次收藏
创作历程
  • 33篇
    2021年
  • 5篇
    2020年
成就勋章
TA的专栏
  • pyecharts
    3篇
  • 时间序列
    4篇
  • SQL
    3篇
  • 数据可视化
    3篇
  • pycharm
    2篇
  • 大数据预处理
    2篇
  • R语言
    6篇
  • 贝叶斯统计
    3篇
  • matlab
    4篇
  • NLP
    1篇
  • Echarts
    1篇
  • 算法
    2篇
  • opencv
    1篇
  • LaTex
    4篇
  • Tableau
    3篇
  • Gephi
    1篇
  • MMDetection
    2篇
  • Manim
    1篇
  • 元胞自助机
    1篇
  • Stata
    1篇
  • 中文乱码
    1篇
兴趣领域 设置
  • 数据库管理
    数据仓库
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Jupyter Notebook 超实用的插件安装教程,值得试试!

文章目录前言一、借鉴的文章二、安装代码前言用了Jupyter Notebook 两年多了,居然才发现这么宝藏的插件,可以有目录、美化公示、查看变量属性等等。一、借鉴的文章Jupyter Notebook 超实用的 5 个插件,值得一试!打造实用的Jupyter Notebook 扩展插件二、安装代码pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyter_contrib_nbextensionsjupyte..
原创
发布博客 2021.10.19 ·
96 阅读 ·
0 点赞 ·
0 评论

Mac下的pyecharts的安装及使用

anacoda使用pyecharts——顶配1. Mac下安装pyecharts步骤新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入1. Mac下安装pyecharts步骤不像之前windows安装pyecharts很是
原创
发布博客 2021.10.19 ·
677 阅读 ·
0 点赞 ·
0 评论

Eviews建立Var模型1

系列文章目录第一章 XXXXX文章目录系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言由于需要建立一个价格优惠指数来反应GMV走势,接触到了Var模型的建立,这个系列初版应该有三篇(毕竟)提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pan
原创
发布博客 2021.09.27 ·
3147 阅读 ·
1 点赞 ·
0 评论

hive sql 计算网页用户留存率和AB实验显著性判断

计算用户留存率:怎么计算留存率?sql代码(HUE上运行):SELECT a.dt1 `创作日期`, a.cnt `创作用户量`, concat((round((a.cnt1/a.cnt)*100, 2)), '%') `次日首页留存率`, concat((round((a.cnt2/a.cnt)*100, 2)), '%') `3日首页留存率`, concat((round((a.cnt3/a.cnt)*100, 2)), '%')
原创
发布博客 2021.09.27 ·
332 阅读 ·
1 点赞 ·
0 评论

hive sql 提取中位数

在hue上做一个当天价格与前四天中位数的pricegap,代码如下: select dt, pro_link, fnl_price, previous_price, percentile(previous_price, 0.5) over(partition by pro_link order by dt asc ROWS BETWEEN 4 preceding and 1 preceding) median, fnl_p
原创
发布博客 2021.09.02 ·
194 阅读 ·
0 点赞 ·
0 评论

Python解决画图中文显示不出来

import warningswarnings.filterwarnings("ignore")# 忽略警告输出%matplotlib inlineplt.rcParams["font.family"] = 'Arial Unicode MS'#⽤来正常显示中⽂标签plt.rcParams['axes.unicode_minus'] = False#⽤来正常显示负号 #有中⽂出现的情况,需要u'内容'...
原创
发布博客 2021.08.24 ·
210 阅读 ·
1 点赞 ·
0 评论

SQL简单查询——学生课程表

文章目录一、学习目标二、数表介绍三、SQL语言一、学习目标1、掌握SELECTSELECTSELECT语句的语法格式,各句子的使用;2、掌握别名的概念、掌握DISTINCTDISTINCTDISTINCT、ALLALLALL的使用;3、掌握空值的概念及查询判断条件的表达,了解查询时系统对NULLNULLNULL值的处理;4、掌握使用GROUPBYGROUP BYGROUPBY子句、HAVINGHAVINGHAVING子句、ORDERBYORDER BYORDERBY子句对查询结果进行排序和分组;
原创
发布博客 2021.06.29 ·
2265 阅读 ·
0 点赞 ·
1 评论

Python连接数据库

笔记用Python连接数据库,并作简单的数据查询,插入操作import pymssql as ssimport datetimemyConn=ss.connect(host='127.0.0.1',user='sa',password='wxxlwy1318',database='Review')myCursor=myConn.cursor() #游标sql='select * from Rank'myCursor.execute(sql)myList=myCursor.fetchall()
原创
发布博客 2021.06.29 ·
20 阅读 ·
0 点赞 ·
0 评论

大数据预处理——数据特征缩放

文章目录数据特征缩放的概念一、数据特征缩放的意义二、数据特征缩放方法1.数据中心化2.数据标准化3.Min-Max缩放3.Max-ABS缩放4.Robust缩放数据特征缩放的概念变量的数据特征是指变量取值的分布特点,与数据所反映的信息内容、测量尺度和采集方式等有关。由于数据特征与分析需求的不匹配,所以要求我们在数据预处理阶段进行数据特征缩放(data feature scaling),以适应分析的需求。一、数据特征缩放的意义消除数据的量纲,而保留其数据分布的特征,这样更有利于不同量纲数据之间
原创
发布博客 2021.06.28 ·
236 阅读 ·
0 点赞 ·
1 评论

大数据预处理——不平衡数据Python处理

文章目录本章概述一、不平衡数据是什么?二、数据说明三、不平衡数据的配平1.向下抽样2.向上抽样四、不平衡数据配平的影响本章概述本章节主要是阐述一下不平衡数据的定义,并且运用向下抽样和向上抽将数据进行一定程度地配平,并且进一步分析数据不平衡对于构建分类器的影响。一、不平衡数据是什么?在目标变量为分类变量的数据分析任务中,目标变量类别间的不平衡问题是一个常见的现象,一般称之为不平衡数据。不平衡数据影响模型训练和预测的准确性,因此需要在数据预处理阶段进行有效的配平,从而消除不良影响。两个类别比例..
原创
发布博客 2021.05.26 ·
259 阅读 ·
0 点赞 ·
2 评论

贝叶斯统计R语言操作3——假设检验

文章目录前言一、贝叶斯假设检验的优点二、R语言实例操作1.题目叙述2. 先验概率2.后验概率3. 贝叶斯因子4.H0H_0H0​的后验概率5. 结论前言此篇文章对于贝叶斯假设检验不做定义以及公式的推导,仅仅是想通过实例R语言操作来理解贝叶斯假设检验。一、贝叶斯假设检验的优点简单,无需抽样分布和显著性水平可以推广至多重检验二、R语言实例操作1.题目叙述Measurements~N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2),μ\muμ is true weight an
原创
发布博客 2021.05.03 ·
802 阅读 ·
0 点赞 ·
0 评论

非结构数据分析与建模——垃圾短信数据集

文章目录前言一、相关数据代码二、实操步骤1.分词,去除无用词2.变成特征向量3. 贝叶斯分类前言本系列非结构数据分析与建模是我的专业课,仅仅是作为笔记方便以后好查阅,也希望能和大家分享,总结经验,非常愿意讨论交流。本次是垃圾短信识别,是一个典型的二分类问题,针对此问题,本文使用哈希向量法以及贝叶斯来做分类预测。一、相关数据代码对于一些基础知识,大家可以借鉴以下博客,博主讲述的One-hot以及TF-IDF很是生动。机器学习之基于文本内容的垃圾短信识别相关数据和代码请参照网盘:垃圾短息数据集
原创
发布博客 2021.04.11 ·
298 阅读 ·
0 点赞 ·
0 评论

贝叶斯统计R语言操作2——二项分布

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前期回顾一、例1:二项分布的成功概率二、例2:男孩的出生率θ\thetaθ是否超过了0.5?三、后验分布密度函数曲线前期回顾贝叶斯统计R语言操作1——共轭先验分布一、例1:二项分布的成功概率1. 设事件A的概率为θ\thetaθ,即P(A)=θP(A)=\thetaP(A)=θ.为估计θ\thetaθ进行了nnn次独立观察,A发生的次数为XXX,XXX服从二项分布b(n,θ)b(n,\theta)b(n,θ):p(x∣θ
原创
发布博客 2021.04.04 ·
884 阅读 ·
3 点赞 ·
0 评论

时间序列R语言操作——非平稳时间序列变平稳

文章目录一、方差不平稳二、具有趋势性1、回归分析法2、随机趋势3、平滑法一、方差不平稳最简单的是做对数变换,使得前后方差没有那么变化。二、具有趋势性1、回归分析法对于一个有线性趋势的序列,可以做一个线性模型。Linear trendQuadratic trendPolynomial trend2、随机趋势 随机趋势的删除——差分法。一阶差分可以使线性趋势的序列实现趋势平稳序列蕴含着曲线趋势,通常低阶(二阶或三阶)差分可提取出曲线趋势的影响 ,这里效果不好的话,可以先取对数,再
原创
发布博客 2021.03.25 ·
6761 阅读 ·
9 点赞 ·
0 评论

jupyter notebook pyecharts实例展示

文章目录前言一、安装包如何选择?二、实例检测1.代码显示2.HTML显示前言最近在做可视化的时候,用到了pyecharts,他的官网在pyecharts-gallery一、安装包如何选择?一开始我自己安装的是0.1.9.4版本的,但是导入包的时候会报错,因此我查阅了文档,他需要的是pyecharts==1.8.1:如果对自己的版本不清楚可以进行查阅:import pyechartsprint(pyecharts.__version__)因此我打开cmd,进行对应版本的安装:pip
原创
发布博客 2021.03.12 ·
820 阅读 ·
2 点赞 ·
0 评论

Echarts三个实例代码介绍

文章目录前言一、Parametric Surface Rose二、Wood City三、Breather四、所需要引用的包前言Echats官网Apache ECharts is a free, powerful charting and visualization library offering an easy way of adding intuitive, interactive, and highly customizable charts to your commercial produc
原创
发布博客 2021.03.12 ·
541 阅读 ·
1 点赞 ·
0 评论

贝叶斯统计R语言操作1——共轭先验分布

文章目录一、共轭先验分布定义二、正态均值的共轭先验分布1.公式理论2.Example: Normal mean3.R code一、共轭先验分布定义设 π(θ)\pi(\theta)π(θ) 是 θ\thetaθ 的先验密度,假设由抽样信息算得的后验密度函数与 π(θ)\pi(\theta)π(θ) 有相同的函数形式,则称 π(θ)\pi(\theta)π(θ) 是 θ\thetaθ 的共轭先验分布。二、正态均值的共轭先验分布1.公式理论设 x1,
原创
发布博客 2021.03.11 ·
605 阅读 ·
0 点赞 ·
0 评论

时间序列R语言操作2——白噪声和随机游走模型

文章目录一、白噪声是什么?二、白噪声的性质三、样本自相关函数四、白噪声检验一、白噪声是什么?没有相关性最简单的时间序列模型平稳时间序列的典型例子建立各种时间序列模型的基础对于独立白噪声,若服从正态分布,是高斯白噪声二、白噪声的性质纯随机性,各序列值之间没有任何相关关系,即为“没有记忆”的序列方差齐性,序列中每个变量的方差都相等,否则,称之为异方差三、样本自相关函数样本自相关函数不严格为零,在零附近波动,有限方差x=rnorm(1000)acf(x)四、白噪声检验
原创
发布博客 2021.03.09 ·
7721 阅读 ·
4 点赞 ·
3 评论

清华镜像分享

清华镜像:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple [包名]
原创
发布博客 2021.03.06 ·
78 阅读 ·
0 点赞 ·
0 评论

echarts所需要的引用包

发布资源 2021.03.06 ·
zip
加载更多