告别无效对话!结构化Prompt设计指南:从ChatGPT到Claude的全模型适配技巧

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习内容,尽在聚客AI学院

一. Prompt设计的基本原则

1.1 核心三要素

  • 明确性:精确描述任务需求(如"生成3条科技新闻标题" vs "写点科技内容")

  • 可控性:通过指令约束输出格式(如JSON/XML/Markdown)

  • 引导性:用示例引导模型风格(Few-shot Learning)

黄金法则

明确任务 → 提供上下文 → 指定格式 → 示例示范

image.png

二. 简洁性与清晰度

2.1 简洁性设计技巧

  • 去除冗余词

    • 劣质Prompt:

请帮我写一个关于机器学习在医疗领域应用的文章,要包含至少三个具体案例,每个案例需要详细描述技术原理和实际效果,总字数不少于1000字...  

优质Prompt:

生成一篇机器学习在医疗应用的综述,包含3个案例(技术原理+效果数据),使用Markdown分章节排版  

使用符号分隔

角色:医疗科技记者  
任务:撰写CT影像分析技术进展报告  
要求:  
- 分"技术演进"、"商业应用"、"伦理挑战"三部分  
- 每个部分包含2个案例  
- 输出为带标题的Markdown

2.2 清晰度保障方法

  • 量化指标

生成5条新能源汽车广告文案:  
- 每条不超过20字  
- 包含"续航"、"智能"关键词  
- 使用疑问句或感叹句式

代码示例:使用LangChain构建清晰Prompt

from langchain.prompts import PromptTemplate  
template = """  
作为{role},请完成以下任务:  
{task}  
要求:  
{requirements}  
"""  
prompt = PromptTemplate(  
    input_variables=["role","task","requirements"],  
    template=template  
)  
print(prompt.format(  
    role="资深产品经理",  
    task="撰写智能手环市场分析报告",  
    requirements="- 分3个章节\n- 包含SWOT分析\n- 输出Markdown格式"  
))

三. 上下文与语境设计

3.1 上下文注入策略

  • 显式声明

背景:2023年Q3中国手机市场数据(IDC报告)  
- 出货量同比下降6%  
- 折叠屏手机增长120%  
任务:基于上述数据,分析未来趋势

隐式引导

假设你是马斯克,在2024年AI安全峰会的开幕致辞中提出3点监管建议

3.2 语境长度控制

  • 滑动窗口法:保留最近N条对话历史

  • 关键信息提取:使用摘要模型压缩上下文

from transformers import pipeline  
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")  
long_text = "..."  # 长文本  
summary = summarizer(long_text, max_length=100, min_length=30, do_sample=False)  
print(summary[0]['summary_text'])

四. 问题明确性保障

4.1 模糊Prompt案例分析

image.png

4.2 明确性检查清单

是否指定了输出格式(JSON/CSV/表格)?

是否限定了内容范围(时间/地域/行业)?

是否明确了风格要求(专业/口语化/幽默)?

是否设置了长度限制(字数/条目数)?

五. 指令设计技巧

5.1 指令类型化模板

image.png

5.2 多步骤指令设计

1. 从维基百科提取"量子计算"发展历史时间线  
2. 标注每个阶段的关键技术突破  
3. 生成可视化建议(图表类型+数据维度)  
按JSON格式输出:  
{  
  "timeline": [{year:, event:, technology:}],  
  "visualization": [{type:, data:}]  
}

代码示例:结构化指令实现

def create_tech_prompt(topic):  
    return f"""  
执行以下分析任务:  
主题:{topic}  
步骤:  
1. 识别三个主要发展阶段  
2. 每个阶段列出2项关键技术  
3. 评估当前技术成熟度(1-5分)  
按如下JSON格式输出:  
{{  
  "stages": [  
    {{"name": "", "technologies": [], "maturity": }}  
  ]  
}}  
"""  
print(create_tech_prompt("基因编辑"))

六. 结构化与非结构化Prompt

6.1 结构化Prompt模板

{  
  "task": "产品描述生成",  
  "product": "无线降噪耳机",  
  "requirements": {  
    "length": "150字",  
    "keywords": ["Hi-Res认证", "40小时续航", "自适应降噪"],  
    "style": "科技感",  
    "exclude": ["价格信息", "促销内容"]  
  }  
}

6.2 非结构化Prompt优化

  • 标记系统

#角色# 资深影评人  
#任务# 分析《奥本海默》的叙事结构  
#要求#  
- 对比诺兰前作  
- 聚焦非线性别事手法  
- 输出带时间码的案例

分隔符号

[BEGIN PROMPT]  
作为历史学家,用学术论文风格解释工业革命的影响:  
- 分经济/社会/技术三个维度  
- 每个维度包含2个数据案例  
- 禁用第一人称  
[END PROMPT]

image.png

代码示例:Prompt效果评估

import evaluate  
rouge = evaluate.load('rouge')  
references = ["这是一条标准答案"]  
predictions = ["模型生成的回答"]  
results = rouge.compute(  
    predictions=predictions,  
    references=references,  
    rouge_types=['rougeL']  
)  
print(f"ROUGE-L分数:{results['rougeL']}")

附:Prompt设计检查清单

任务目标是否用动词明确描述(生成/分析/转换)?

是否包含负面约束(不要包含/避免提及)?

是否有示例演示预期格式?

专业术语是否有明确定义?

长度/数量等是否量化指定?

:本文代码需安装以下依赖:

pip install langchain transformers evaluate

更多AI大模型应用开发学习内容,尽在聚客AI学院

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚客AI

你的鼓励就是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值