python求线段长度_python微元法计算函数曲线长度的方法

本文通过Python编程展示了使用微元法计算二维和三维曲线长度的方法,包括圆周、参数曲线和非参数曲线。通过定义积分函数为1,结合numpy库计算每一微小步长的曲线长度,然后求和得出总长度。示例代码中包含详细的注释和可视化结果。
摘要由CSDN通过智能技术生成

计算曲线长度,根据线积分公式:

,令积分函数f(x,y,z) 为1,即计算曲线的长度,将其微元化:

其中

根据此时便可在python编程实现,给出4个例子,代码中已有详细注释,不再赘述

'''

计算曲线长度,根据线积分公式:

\int_A^Bf(x,y,z)dl,令积分函数为1,即计算曲线的长度

'''

import numpy as np

from mpl_toolkits.mplot3d import *

import matplotlib.pyplot as plt

## 求二维圆周长,半径为1,采用参数形式

def circle_2d(dt=0.001,plot=True):

dt = dt # 变化率

t = np.arange(0,2*np.pi, dt)

x = np.cos(t)

y = np.sin(t)

# print(len(t))

area_list = [] # 存储每一微小步长的曲线长度

for i in range(1,len(t)):

# 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值