噪音通道模型_图解噪声与去噪之三:噪声建模与去噪

本文探讨噪声通道模型在图像处理中的应用,通过实验揭示噪声与信号的关系,介绍泊松分布和高斯分布模型对信号相关和不相关噪声的描述。详细阐述噪声建模过程,包括噪声profile获取、泊松-高斯模型拟合、噪声稳定化及去噪方法(如Wiener滤波、DCT、BM3D等)。最后指出Alessandro Foi的相关研究在手机相机中的实践意义。
摘要由CSDN通过智能技术生成

本文系微信公众号『大话成像』,知乎专栏『All in Camera』原创文章,转载请注明出处。

上一篇说到bm3d等高级算法可以利用数学方式把信号分解成不同性质的部分,然后根据不同的噪声特点进行去噪。噪声模型则是去噪算法的重要依据。

先看一个实验,拍摄一张Grey Scale Chart:

曝光时间 33ms, ISO 3200,得到如下图像:

图像上有很多噪声,对这个图像做横切,可以得到pixelvalue相对intensity的关系图

继续拍摄至N张照片,将N张照片求平均得到一张照片

求和平均得到的照片

把所有图片的像素值与亮度标在一个图中

中间的实线是图像均值,所有被虚线包围的红色的点,是所有图像的像素值。

按照图解噪声与去噪第一篇里的方法,画出像素标准差对均值的曲线可以得到

从上图可以看出: 1. 噪声随着亮度的增加而增加。 2. 标准差与均值遵循一定的函数关系。

把多组实验的结果叠加可以得到下图:

可以看出在平滑的曲线上多了许多毛刺.

从上面两张图可以看出在图像中存在着两种噪声:信号相关噪声

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值