本文系微信公众号『大话成像』,知乎专栏『All in Camera』原创文章,转载请注明出处。
上一篇说到bm3d等高级算法可以利用数学方式把信号分解成不同性质的部分,然后根据不同的噪声特点进行去噪。噪声模型则是去噪算法的重要依据。
先看一个实验,拍摄一张Grey Scale Chart:
曝光时间 33ms, ISO 3200,得到如下图像:
图像上有很多噪声,对这个图像做横切,可以得到pixelvalue相对intensity的关系图
继续拍摄至N张照片,将N张照片求平均得到一张照片
求和平均得到的照片
把所有图片的像素值与亮度标在一个图中
中间的实线是图像均值,所有被虚线包围的红色的点,是所有图像的像素值。
按照图解噪声与去噪第一篇里的方法,画出像素标准差对均值的曲线可以得到
从上图可以看出: 1. 噪声随着亮度的增加而增加。 2. 标准差与均值遵循一定的函数关系。
把多组实验的结果叠加可以得到下图:
可以看出在平滑的曲线上多了许多毛刺.
从上面两张图可以看出在图像中存在着两种噪声:信号相关噪声