世界货币汇率——策划和发布仪表板
微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩
本说明的目的是讨论如何轻松处理公开可用的数据,让我们更深入地了解下划线故事,否则我们无法通过查看其原始版本来感知。例如,让我们使用货币数据(汇率对美元)来构建此分析。
下载数据
该数据可在IMF 网站上获得。通过选择此处列出的可能选项,可以轻松下载汇率,如下图所示。
图 1——IMF 汇率下载页面截图
整理数据
下载此数据后,需要对其进行整理以供进一步处理。原始数据的示例图片如下。
图 2 — 原始数据截图
现在,你注意到红色方框锚定的细胞了吗?这些单元格包含必须删除的数据(如行 - 1 和 2)或需要预先填充前面的数据,以便“平均函数”(我们将在稍后使用)正常工作。为什么我们需要 AVG 函数?原因——Tablaue 需要某种形式的聚合才能工作——我们将在此处使用的可视化工具。最终在这里起作用的唯一“聚合”形式是“AVG”,因为当我们决定使用“月份”、“季度”缩小数据轴时,“SUM”最终将添加所有相邻的货币汇率”和“年”作为聚合器. 此外,如果不使用上述数据预填充空单元格中的数据,将导致“AVG 函数”抛出不正确的结果,因为在执行“平均”时,Tablaue 将以最低粒度运行它,在该数据集中设置为级别的“日”。
策展中的问题
但是用上面的数据填充数据会给我们带来一些严重的问题。为什么?由于空白单元格可能是“不可用数据”的结果,它可能会排成多行——使整体分析变得混乱,从而导致错误的结论。幸运的是,我们可以很容易地处理这个问题。如何?在预填数据的日子里,汇率值将保持不变,并且可以在计算 %Change 时轻松过滤掉这些数据,这将导致零 — 可以轻松地从其余数据中过滤掉。
策展过程
对于预填充,可以使用 excel 和 python 完成具有上述值的空单元格。我发现 python 更简单、更方便。下面列出了用于该目的的代码。
file_to_process = "IMF_Currency_Rates.csv"
with open(file_to_process,"r") as file:
df = pd.read_csv(file)
df =df.fillna(method='ffill')
df.to_csv("currencyratesimf.csv")
精选文件的快照嵌入在下图中。
图 3 — 用于可视化的精选文件
注意——为了使可视化工具无缝运行,请确保将 B 列的类型更改为“日期类型”——在 CSV 文件中手动更改或使用处理代码。否则 Tablaue 将简单地忽略这些在输入文件中错误键入数据字段的行。
数据可视化
下图给出了 Tablaue 工作表的快照。
下图给出了 Tablaue 工作表的快照。
图 4 — Tablaue 工作表快照
请注意,此工作表中的关键成分是一些计算——源自原始数据。请注意,在您开始此过程之前,请使用 Tablaue 的数据透视功能对原始数据进行数据透视,这样您就可以将所有国家/地区汇总到一个列中,将汇率汇总到另一个列中。
计算百分比变化
现在为了计算汇率的变化百分比,我们需要查找我们计划用来比较当前汇率的汇率。这可以通过使用 Tablaue 的内置 LOOKUP 函数轻松完成。代码嵌入在下图中。
图 5 — 查找率公式
%Change 可以使用上面的方法轻松计算,如下所述。请注意,此公式有一个名为“视图中的时间单位”的字段。这是一个用户定义的参数,可以灵活地更改查看窗口的宽度。
图 6 — %Change 的公式
接下来,我们需要一个“DateFilter”,以便我们能够从查看窗口中删除所有不必要的混乱,如我之前的笔记“Tableau - 管理窗口的视图”中所述
排序窗口数据
通过以上所有这些计算,我们几乎完成了,除了一个。什么?我们需要仪表板根据 %Change 的值对数据进行排序。现在,为了排序工作,我们需要为 Tablaue 提供一个特定的列,而不是很多。因此,我们必须选择一个特定的列(从参数“视图中的时间单位”定义的许多列中)。对于本练习,我决定选择最后一列。启用该列的公式如下。
图 7 — 最新百分比变化计算
现在使用 Tablaue 的 RANKUNIQUE 函数,我们可以按照我们选择的顺序列出这些百分比变化——“asc”或“desc”。Rank 唯一函数定义如下。
图 8 — 用于排序的等级函数
在写完所有的计算之后,我们就都准备好了。我们只需将这些计算插入工作表中,如图 4 所示。下面是最终仪表板的快照。
图 9 — 最终仪表板
感兴趣的读者可以在这里体验真正的仪表板 — https://paragkar.com/world-currency-rates-trends-with-respect-to-usd/
非常感谢阅读。
推荐书单
《图解数据智能》
《图解数据智能》是一本为数字资源的对接方、分配方以及广大的入门学习者提供相关数据智能概念的科普读物。书中各个概念之间相对独立,读者可以将其作为一本检索用的工具书籍,也可以根据自己的兴趣灵活查阅相关篇章。
无论你是数智化领域的专业从业人员,还是刚刚毕业想要进入该领域的技术小白,抑或是正面临着数字化转型的政府或企业人员,或者是千千万万个生活在这个数智化社会中的普通人,都可以阅读此书,你将从酣畅淋漓的技术释疑和轻松有趣的漫画解读中,找到自己的答案。
精彩回顾
微信搜索关注《Python学研大本营》
访问【IT今日热榜】,发现每日技术热点