1、均值归一化
- 在一般的图像预处理过程中都会对图像进行减去mean,除以std操作。
- 需要注意的是:一定要用训练集计算出均值和方差,否则违背了深度学习的原则(即模型训练仅能从训练数据中获取信息)。对于得到的mean值,训练集、验证集和测试集都要分别减去均值。
2、为什么要均值归一化
在计算机视觉领域中,一定免不了的就是图像预处理中的 逐个样本减去mean值的过程,那么为什么一定要做这一步呢?
其主要的原因就是,对于自然图像,其是一种平稳的数据分布【即图像的每一维都服从相同的分布】。所以通过减去数据对应维度的统计平均值,来消除公共的部分,以凸显个体之间的特征和差异。下面就用一个图来直观的表示一下:
可以看到减去均值后的图b,天空的纹理被消除了,凸显出了图片中的车和高楼等主要特征
3、计算均值与方差
# 首先,你需要安装numpy和opencv模块。# opencv 可以通过下面的命令来直接安装。pip install opencv-pythonimport osimport numpy as npimport cv2

图像预处理中,减去均值和除以方差是常见步骤,确保数据分布平稳。本文介绍了为何进行均值归一化,并详细对比了在numpy、torch中减去均值除方差的四种方法,强调了预处理速度对GPU利用率的影响。同时,提供了使用OpenCV实现mxnet和pytorch图像均值归一化的教程链接。
最低0.47元/天 解锁文章
695

被折叠的 条评论
为什么被折叠?



