图像减均值除方差_Day202:opencv实现mxnet的均值归一化

图像预处理中,减去均值和除以方差是常见步骤,确保数据分布平稳。本文介绍了为何进行均值归一化,并详细对比了在numpy、torch中减去均值除方差的四种方法,强调了预处理速度对GPU利用率的影响。同时,提供了使用OpenCV实现mxnet和pytorch图像均值归一化的教程链接。
摘要由CSDN通过智能技术生成

1、均值归一化

  • 在一般的图像预处理过程中都会对图像进行减去mean,除以std操作。
  • 需要注意的是:一定要用训练集计算出均值和方差,否则违背了深度学习的原则(即模型训练仅能从训练数据中获取信息)。对于得到的mean值,训练集、验证集和测试集都要分别减去均值

2、为什么要均值归一化

在计算机视觉领域中,一定免不了的就是图像预处理中的 逐个样本减去mean值的过程,那么为什么一定要做这一步呢?
其主要的原因就是,对于自然图像,其是一种平稳的数据分布【即图像的每一维都服从相同的分布】。所以通过减去数据对应维度的统计平均值,来消除公共的部分,以凸显个体之间的特征和差异。下面就用一个图来直观的表示一下:

f0da0acb00d7639c89693e0b48ba12d8.png


可以看到减去均值后的图b,天空的纹理被消除了,凸显出了图片中的车和高楼等主要特征

3、计算均值与方差

# 首先,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值