前言
BN(Batch Normalization)在如今的神经网络中应用广泛,涵盖图像分类、语义分割和目标检测等各个领域,对于防止过拟合起到了巨大的作用。在TensorFlow中,使用BN时通常要设置一个参数——is_training,作为模型处在训练模式或者测试模式的标志。倘若这个参数使用不得当,就会出现推理时精度异常,会出现如下情况:
①batch_size = 1时,无论输入数据是否打乱,推理精度都是极低;
②batch_size 较大时,且输入数据没有打乱时,精度极低;
③当batch_size较大时,且输入数据随机打乱时,精度略高,但会出现重复性误差,即同一批数据,两次推理结果可能不同。
这些情况是常见的BN参数设置错误问题,当读者看完下面对BN的解读,就可以知道出现这些情况的原因,从而更加有效地去运用BN。
BN训练及推理
在BN论文中,算法的计算过程如下所示: μ B \mu_{\mathcal{B}} μB、 σ B 2 \sigma_{\mathcal{B}}^{2} σB2、 γ \gamma γ、 β \beta β和 y i y_{i} yi分别为神经网络中当前层所有节点在batch这个维度的均值、方差、尺度、偏置和输出,m为batch大小。 μ B \mu_{\mathcal{B}} μB、 σ B 2 \sigma_{\mathcal{B}}^{2} σB2为当前Batch的统计值, γ \gamma γ、 β \beta β为可训练的参数,初始值为1和0。

举两个例子:
①在一个一维的BP神经网络中,某一层的维度为[10,2000],那么这层的 μ B \mu_{\mathcal{B}} μB、 σ B 2 \sigma_{\mathcal{B}}^{2} σ

最低0.47元/天 解锁文章
1355

被折叠的 条评论
为什么被折叠?



