Batch Normalization测试时is_training为什么要设为False

前言

BN(Batch Normalization)在如今的神经网络中应用广泛,涵盖图像分类、语义分割和目标检测等各个领域,对于防止过拟合起到了巨大的作用。在TensorFlow中,使用BN时通常要设置一个参数——is_training,作为模型处在训练模式或者测试模式的标志。倘若这个参数使用不得当,就会出现推理时精度异常,会出现如下情况:
①batch_size = 1时,无论输入数据是否打乱,推理精度都是极低;
②batch_size 较大时,且输入数据没有打乱时,精度极低;
③当batch_size较大时,且输入数据随机打乱时,精度略高,但会出现重复性误差,即同一批数据,两次推理结果可能不同。
这些情况是常见的BN参数设置错误问题,当读者看完下面对BN的解读,就可以知道出现这些情况的原因,从而更加有效地去运用BN。

BN训练及推理

在BN论文中,算法的计算过程如下所示: μ B \mu_{\mathcal{B}} μB σ B 2 \sigma_{\mathcal{B}}^{2} σB2 γ \gamma γ β \beta β y i y_{i} yi分别为神经网络中当前层所有节点在batch这个维度的均值、方差、尺度、偏置和输出,m为batch大小。 μ B \mu_{\mathcal{B}} μB σ B 2 \sigma_{\mathcal{B}}^{2} σB2为当前Batch的统计值, γ \gamma γ β \beta β为可训练的参数,初始值为1和0。
在这里插入图片描述
举两个例子:
①在一个一维的BP神经网络中,某一层的维度为[10,2000],那么这层的 μ B \mu_{\mathcal{B}} μB σ B 2 \sigma_{\mathcal{B}}^{2} σ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值