深度学习数据增强方法总结

前言

在计算机视觉领域中,为了提高深度神经网络模型的泛化性能,更好地适应的环境和工况,在模型的训练过程中常常会用到数据增强算法。这篇博客将总结分享现有的一些数据增强方法。

增强方法 适用领域
Flip 分类、检测、分割
Rotation 分类、分割
Resize 分类、检测、分割
Croping 分类、检测、分割
Noise 分类、检测、分割
Color distortions 分类、检测、分割
Geometric distortions 分类、分割
Random erase、 CutOut 分类、检测
Hide-and-seek 分类、检测
Gridmask 分类、检测
Mixup 分类、检测
CutMix 分类、检测

Flip

对图像进行水平翻转或者垂直翻转。
Flip效果

Rotation

将图像绕着某个点旋转一定的角度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值