3.6 矩阵自反广义逆

定义

  自反广义逆reflexive generalized inverse是广义逆加上一个自反条件。广义逆 A − A^- A不唯一,所以在这么多广义逆里可以加上各种条件缩小广义逆的范围,如果 G G G A A A的广义逆,那么再加上下面这个条件就成了自反广义逆:
G A G = G GAG=G GAG=G
  自反广义逆的全体叫做 A { 1 , 2 } A^{\{1,2\}} A{1,2},这个上标的1和2是下面两个条件:
  A G A = A   G A G = G ~ AGA=A\\ ~GAG=G  AGA=A GAG=G
  从这里也不知道 G G G A A A的广义逆,但是A不一定是 G G G的广义逆,举个例子:
A = ( 0 0 1 1 2 − 2 2 4 − 2 ) G = ( 2 5 − 2 0 − 2 1 1 0 0 ) A G A = ( 0 0 1 1 2 − 2 2 4 − 2 ) G A G = ( − 2 1 0 2 0 0 1 0 0 ) A=\begin{pmatrix}0 & 0 & 1\\ 1 & 2 & -2\\ 2 & 4 & -2\\ \end{pmatrix}\\ G=\begin{pmatrix}2 & 5 & -2\\ 0 & -2 & 1\\ 1 & 0 & 0\\ \end{pmatrix}\\ AGA=\begin{pmatrix}0 & 0 & 1\\ 1 & 2 & -2\\ 2 & 4 & -2\\ \end{pmatrix}\\ GAG=\begin{pmatrix}-2 & 1 & 0\\ 2 & 0 & 0\\ 1 & 0 & 0\\ \end{pmatrix}\\ A= 012024122 G= 201520210 AGA= 012024122 GAG= 221100000

计算方法

  还记得计算广义逆的步骤吗?就是这一步:
Q ( E r ∗ ∗ ∗ ) n × m P Q\begin{pmatrix} E_{r} & \ast\\ \ast & \ast \end{pmatrix}_{n \times m}P Q(Er)n×mP
  这一步中间的矩阵决定了是否为自反广义逆,如果中间这个矩阵和原矩阵的秩一样的话,那么得到的矩阵就是自反广义逆,也就是下面的公式:
Q ( E r ∗ ∗ 0 ) n × m P Q\begin{pmatrix} E_{r} & \ast\\ \ast & \bold 0 \end{pmatrix}_{n \times m}P Q(Er0)n×mP
  如果右下角不为0,那么矩阵的秩就改变了,得到的就不是自反广义逆。因为我写广义逆的算法中把右下角全部变成零了,得到的就是自反广义逆,所以这篇文章我就不贴代码了。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值