点、线、圆、矩形、抛物线的类定义_点、圆、球和n维球体积之间有怎样的爱恨情仇?让我们一起扒开他们之间鲜为人知,惊为天人的秘密关系!...

99a53b4227ac4d21de9cc05a4fda3d97.png

吃瓜群众们,请拿好你们的小板凳,错开坐好,不要挡住后面人的视线,不要把西瓜仔西瓜皮乱吐乱丢。我们要开始了。

83c24af1ba687a0b857b58e34e28df4c.png

恩,让我想想,从何说起。

一个点

如左边所示。试想一下,这个点在纸上变大变大变大,就成了圆。在地上变大变大变大,就成了铅球。。。(是谁扔我的西瓜皮?就不能等我说完吗?)

我们设圆或球的半径都是

圆的周长公式:

圆的面积公式:

;

球的表面积公式:

;

球的体积公式:

;

(刚是谁在问球的周长公式的?请站出来!大家快吐他西瓜仔!)

有人告诉我千万别在文章里写公式,否则阅读量会指数级下降。不好意思,如果这四个公式都不写,我这文章就没法写了,那阅读量为0。有看不懂的这四个公式的小伙子们,现在就可以打电话给你们的体育老师问问了,打完之后,可以去隔壁看看真正爱恨情仇的文学作品,对了,请把西瓜留下。

时,什么周长,什么面积,什么体积都是浮云,统统归零。这就是点。似乎没啥好说的了。。。。(你们丢我瓜皮的时候轻一点啊)

你们有没有发现,圆的周长和面积之间有某种不可言说的关系?

88f422d399de7cab3aabfe89e5587037.png

1、对圆的面积公式进行求导

居然得到了圆的周长公式!

2、对圆的周长公式进行积分

居然得到了圆的面积公式!

3、再对圆的周长公式换个方式积分

居然得到了球的表面积公式!!

4、对球的表面积公式积分

居然得到了球的体积公式!!!

5、对球的体积公式进行求导

居然得到了球的表面积公式!!!

0c515e2e7e93abd631117818a3490777.png

这,难道是天意?我似乎已经感觉到我成为伟大数学的家的梦想已经近在咫尺了!

我要是找出这个规律,岂不是n维球的体积和表面积公式都能得到了?(醒醒,大白天的做什么梦)

上面5个推导流程原理,其实不难想象。

例如2,对圆的周长积分,其实就是求圆面积求解的微分思想,即把圆分割无数个从小到大的圆环,当圆环的宽度非常小的时候,基本就是周长,可以近似认为圆环面积为:

,那就得到如上积分公式了,求导则是积分的逆运算。其他推导也是类似的思想。如果对3不理解的话,可以看一下我之前的这个回答:
用积分推导球的表面积有哪些方法?​www.zhihu.com
223e67f8dff65a8887f525b2075f5d6f.png

那么问题来了,到底有什么规律?

圆是点堆起来的,球是圆堆起来的,四维球是三维球堆起来的。依次类推,高维球是低维球堆起来的。(划重点了!必考。)

能不能根据这个规律推导出四维球表面积和体积?

首先根据上面的规律,我们可以很容易的总结出:对多维球表面积求积分可以得到体积,对体积求导可以得到表面积。

即:

;

并且:

那我们继续来找一下体积的变化规律!

一、验证一下:三维球是二维圆堆起来的!

圆的方程是:

看来球果然是圆堆起来的。(球是圆绕

轴旋转半周形成的,图就不画了,很好理解的)

b9279b382836052ff77c7489024bcfc1.png

二、求求看:四维球是三维球堆起来的!

球的方程是:

这里

其实就是一个类二维平面,我们设为
,则有

(四维球就是三维球绕二维平面

旋转半周形成的,图就不画了,我画不出来)

(后面举手的同学,有啥问题要问?为啥我总是要求

?因为我喜欢
,你要喜欢
你也可以求
,最终结果都一样,因为这只是换不同的轴旋转而已。)

说实话这个积分是真的不太好求的。有点难度啊。分析一波。首先要理解

有怎么样的数学关系,能不能写成其他形式?最好是转换成
乘积的形式。他们的关系在四维下,无法画出来,但可以类比到二维。如下单位圆:

b27926c0d89793a66f21263cab3d54cb.png

为角度。不难得出:

以及

所以:

在这个圆中,当

时,不难得出
。这种规律,在四维,甚至更高纬度上是一样正确的。

由此可以得到:

(实际上当我们已经熟知这种规律的时候,可以直接令

;

则有:

)

到这里就是我们熟悉的分部积分法啦!即

;

(别问我上面

的积分了,看和角公式

)

哎,筒子,你别走,我再发点西瓜,瓜子也有的!

(感谢前排同学提供的“更简单”方法:

这谁说简单的?站出来!大家丢他瓜皮!)

(观众:开头说好的只有四个公式的,你现在说的是人话吗?我:。。。T_T)

我们继续上面的计算:

7c19ee6f544338bda924d8f671eb4f74.png
真的,这个积分,我求了一天!!!

我们终于得到四维球体积公式了:

所以四维球表面积:

或者

去验证了一下,答案是正确的!!!

三、冲刺试试:五维球是四维球堆起来的。

不要怂,就是干!

到这里,干不动了。。。设

;则

完美!

五维球的体积和表面积分别是:

四、递推下去:n+1维球是n维球堆起来的。

d07c29c1d56cab6473d4dfa074055121.png

so,有没有发现规律?

还看不出规律吗?用瓜皮砸死我算了吧!只求一死!

d40e9769655a3065130cdda786c2e189.png

不难得出

维球的递推公式:

;

或者:

再或者:

随便你怎么写;

快乐三步走:

第一步:求出

第二步:乘以

第三步:尽情享受

吧。

最后可求面积:

踏破铁鞋无觅处,得来真的太辛苦!

(嗑瓜子群众:兄嘚,帮帮忙,求一下100维球的体积公式的啦。)

兄嘚,我给你3秒时间,收回这句话!这说的是人话吗?你想让我累死在求积分的路上?

729c2347132b7db3cf977aa351ec768b.png

误会,误会,都是误会,我这就求出来。(苦累在小命面前一文不值)

那么1维球的体积是多少?(吃瓜群众:智障吧,1维是一条线,哪来的球?)

就是一条线,这条线的长度是多少?肯定就是球的直径啊!

你们猜猜看0维球的体积是多少?(吃瓜群众:你猜我猜不猜?)

所以有:

代入得:

这。。。恕我无能,实在头疼!

8b3ed49714e43e3f8d60931d3a1111c6.png

这玩意到底怎么解???

五、惊为天人:

维球的体积和伽玛函数的神秘联系

名言警句:没有什么是欧拉解决不了的!(如果有,当我没说,只怪欧拉走的早。高斯:我有几句话不知当讲不当讲。我:不当讲。)

308beca764014e056cd339de012aa30c.png
别说了,欧拉是我爷爷

欧拉的伽玛函数:

这鬼画符的玩意怎么看都和阶乘扯不上半毛钱关系啊?

我们理解的阶乘:

求一求欧拉的阶乘:

看出啥了吗?也就是:

其中:

所以:

;伽玛函数中,
不仅可以取正整数,还可以取正实数,还可以取复数(实数部大于0)。

所以欧拉的伽玛函数是我们所理解的阶乘的推广!

那么这鬼画符的玩意和n维球体积又有什么半毛钱关系?

大家没有感觉,随着维度的增加,体积公式中半径的次方数量也是递增?这种变化规律和阶乘有一种说不出的神秘联系?

高斯:有些话我必须说!(我:你说你说)

{

高斯积分:

极坐标下的高斯积分:

这里

就是半径为
维球表面积。

}

高斯的话说完了。不好意思,我不是针对你,我是说座的所有人(包括我)都看不懂这玩意!

学过概率论的童鞋,应该知道:

;没学过的童鞋现在记下来就行了。这里就不展开证明了(知乎搜高斯积分有很多证明过程)。

根据高斯积分有:

再看伽玛函数:

这么相似?把高斯积分往伽玛函数上凑:

;有

所以:

;我们前面有:

;

即:

这就舒服了,完美!

ba67ac0e35ee7bf09aba2dc3001c024d.png

那么100维球的体积就可以算出来啦!哈哈哈哈哈!

(吃瓜群众:默默的问一句,199维球的体积是多少?)

那么问题来了

的值是???

7d2400d71f4f821122bfec82c955a2f8.png

上面我们推出伽玛函数最基本的性质:

那么同理,当n为奇数时有:

所以只要求出

,应该就能解决
取奇数的问题。

有没有发现这玩意和

十分相似?

小样,换个马甲以为小爷就不认识了???看我们如何撕开它的伪装!

,有

恩,这下问题解决了吧!

,果然是一模一样!

取奇数的时候:

那么199维的体积为:

老铁双击666!

六、最后一击:给吃瓜群众们一个交代!

1、

维球体积的递推公式:

2、

维球体积通项公式:

为奇数时:

为偶数时:

3、

维球表面积公式:

为奇数时:

为偶数时:

一切显得如此简洁!

(个人推导,难免有错误,记得提醒我啊!)

3d7dfa334bff6f8ad59b3eb41003d0db.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值