如何用python画矿物分布地图_如何利用python中的pyecharts包绘制数据地图-百度经验...

此数据展示了中国各省份的人口数量,排名前三的是广东、山东和河南,总人口分别达到10430.03万、9579.31万和9402.36万。数据还涵盖了其他省份如江苏、河北等地的人口情况,以及直辖市如上海、北京的居民数量。

输入数据。

data=[("广东",10430.03),("山东",9579.31),("河南",9402.36),("四川",8041.82),("江苏",7865.99),("河北",7185.42),("湖南",6568.37),("安徽",5950.1),("浙江",5442),("湖北",5723.77),("广西",4602.66),("云南",4596.6),("江西",4456.74),("辽宁",4374.63),("黑龙江",3831.22),("陕西",3732.74),("山西",3571.21),("福建",3552),("重庆",2884),("贵州",3476.65),("吉林",2746.22),("甘肃",2557.53),("内蒙古",2470.63),("上海",2301.391),("台湾",2316.2),("新疆",2181.33),("北京",1961.2),("天津",1293.82),("海南",867.15),("香港",709.76),("青海",562.67),("宁夏",630.14),("西藏",300.21),("澳门",55.23)]

注意:省市不要包含“省"、"市"等字。

data也可以是数据框。

import pandas as pd

data=pd.DataFrame(data)

data.columns=['city','popu']

内容概要:本文围绕基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定展开研究,重点探讨了在动态系统中如何通过MPC实现精确控制,同时利用MHE进行状态估计以提升系统鲁棒性和精度。文中结合Matlab代码实现,展示了MPC与MHE协同工作的算法流程、数学建模过程及仿真验证,尤其适用于存在噪声或部分可观测的复杂系统环境。该方法能够有效处理约束条件下的最优控制问题,并实时修正状态估计偏差,从而实现对目标点的稳定镇定。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校研究生、基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定研究(Matlab代码实现)科研人员及从事控制系统开发的工程技术人员;熟悉状态估计与最优控制相关概念的研究者更为适宜; 使用场景及目标:①应用于机器人控制、航空航天、智能制造等需要高精度状态估计与反馈控制的领域;②用于深入理解MPC与MHE的耦合机制及其在实际系统中的实现方式,提升对预测控制与状态估计算法的综合设计能力; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注MPC代价函数构建、约束处理、滚动优化过程以及MHE的滑动窗口估计机制,同时参考文中可能涉及的卡尔曼滤波、最小均方误差等辅助方法,系统掌握集成架构的设计思路与调参技巧。
内容概要:本文介绍了一种基于稀疏贝叶斯学习(SBL)的轴承故障诊断方法,提出两种群稀疏学习算法用于提取故障脉冲信号。第一种算法仅利用故障脉冲的群稀疏性,第二种进一步结合其周期性行为,以提升故障特征提取的准确性与鲁棒性。文档提供了完整的Matlab代码实现,适用于振动信号分析与早期故障检测,具有较强的工程应用价值。此外,文中还附带了多个科研领域的仿真资源链接,涵盖电力系统、信号处理、机器学习、路径规划等多个方向,突出MATLAB在科研仿真中的广泛应用。; 适合人群:具备一定信号处理或机械故障诊断基础,熟悉Matlab编程,从【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)事科研或工程应用的研究生、工程师及科研人员;对智能诊断、稀疏表示、贝叶斯学习感兴趣的技术人员。; 使用场景及目标:①应用于旋转机械(如轴承、齿轮箱)的早期故障检测与健康监测;②研究群稀疏性与周期性先验在信号分离中的建模方法;③复现SBL算法并拓展至其他故障特征提取任务;④结合所提供的网盘资源开展相关领域仿真研究与算法开发。; 阅读建议:建议结合Matlab代码逐行理解算法实现细节,重点关注群稀疏建模与周期性约束的数学表达;推荐对比两种算法的实验结果以深入理解其性能差异;同时可利用提供的网盘资源拓展学习其他仿真技术,提升综合科研能力。
### 使用Python处理高光谱遥感数据进行矿物填图 #### 数据准备与导入 为了有效地利用Python进行高光谱遥感数据分析并完成矿物填图工作,首先需要准备好相应的高光谱影像数据。通常这些数据可以从公开数据库获取或是通过特定设备采集而来。 ```python import spectral as sp from osgeo import gdal, ogr, osr import numpy as np import matplotlib.pyplot as plt ``` 加载高光谱图像文件可以借助`spectral`库来简化操作过程[^1]: ```python # 加载HSI立方体数据 img_path = 'path_to_hyperspectral_image' hsi_data = sp.open_image(img_path).load() print(f'Image Shape: {hsi_data.shape}') # 输出尺寸大小 ``` #### 波段选择与特征提取 针对不同类型的矿物质具有独特的吸收反射特性,在具体实施过程中可以根据已知矿物的波谱曲线选取敏感波段作为分析对象。这一步骤对于后续模型训练至关重要。 ```python def select_bands(hsi_cube, band_indices): """根据给定索引列表从超光谱立方体内抽取指定波段""" selected_bands = hsi_cube[:, :, band_indices] return selected_bans.reshape(-1, len(band_indices)) band_selections = [70, 98, 120] # 假设这是三个重要的波段编号 selected_features = select_bands(hsi_data, band_selections) ``` #### 训练分类器 采用监督学习的方式构建矿物识别算法,这里推荐使用支持向量机(SVM)或其他适合于多类别分类的任务的方法来进行建模。在此之前还需要收集足够的样本用于训练阶段。 ```python from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split( selected_features, labels.flatten(), test_size=0.3) scaler = StandardScaler().fit(X_train) svm_classifier = SVC(kernel='rbf', probability=True) svm_classifier.fit(scaler.transform(X_train), y_train) accuracy = svm_classifier.score(scaler.transform(X_test), y_test) print('Model Accuracy:', accuracy * 100, '%') ``` #### 结果可视化 最后将预测的结果映射回原始空间,并绘制出彩色的地图表示各个像素所属类别的分布情况。 ```python predicted_map = svm_classifier.predict_proba(selected_features).argmax(axis=-1) plt.figure(figsize=(10, 6)) plt.imshow(predicted_map.reshape((hsi_data.shape[0], hsi_data.shape[1]))) plt.colorbar(label="Mineral Type Index") plt.title("Predicted Mineral Distribution Map") plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值