指标是一个汉语词语,出自郭沫若《天地玄黄·鲁迅和我们同在》,衡量目标的方法;预期中打算达到的指数、规格、标准,一般用数据表示。
互联网行业流行一个词,指标化运营。简单的讲就是运营标准化,建立标准化体系,按照体系系统化管理。包括管理、工作、技术标准。行业比较有名气的麦当劳、肯德基、宜家等,都是标准化运营业典型企业。
接下来,我们看看互联网行业常用的指标:
1、PV
PV(page view)即页面浏览量,通常是衡量一个网络新闻频道或网站甚至一条网络新闻的主要指标。网页浏览数是评价网站流量最常用的指标之一,简称为PV。监测网站PV的变化趋势和分析其变化原因是很多站长定期要做的工作。 Page Views中的Page一般是指普通的html网页,也包含php、jsp等动态产生的html内容。来自浏览器的一次html内容请求会被看作一个PV,逐渐累计成为PV总数。
2、UV
UV是unique visitor的简写,是指通过互联网访问、浏览这个网页的自然人。是指独立用户/独立访客。指访问某个站点或点击某条新闻的不同IP地址的人数,独立IP只记录第一次进入网站的具有独立IP的访问者,假如一台电脑关机了,30分钟后重启,再次访问这个站那就再计算一次ip,在同一天内再次访问该网站则不计数。独立IP访问者提供了一定时间内不同观众数量的统计指标,而没有反应出网站的全面活动。比如你是ADSL拨号上网的,你拨一次号都自动分配一个ip,这样你进入了本站,那就算一个ip,当你断线了而没清理cookie,之后又拨 了一次号,又自动分配到一个ip,你再进来了本站,那么又统计到一个ip,但是UV(独立访客)没有变,因为2次都是你进入了本站。
3、DAU
DAU(Daily Active User)日活跃用户数量。常用于反映网站、互联网应用或网络游戏的运营情况。DAU通常统计一日(统计日)之内,登录或使用了某个产品的用户数(去除重复登录的用户),这与流量统计工具里的访客(UV)概念相似。

4、MAU
MAU(即monthly active users)是一个用户数量统计名词,指网站、app等月活跃用户数量(去除重复用户数)。数量的大小反应用户的活跃度,但是无法反应用户的粘性。
5、LTV
LTV(life time value)生命周期总价值,意为客户终生价值,是公司从用户所有的互动中所得到的全部经济收益的总和。通常被应用于市场营销领域,用于衡量企业客户对企业所产生的价值,被定为企业是否能够取得高利润的重要参考指标。

终身价值(LTV):是计算客户满意度“货币数据”的办法.
LTV的计算涉及到顾客保持率、顾客消费率、变动成本、获得成本、贴现率等信息的正确取得。
其中:
顾客保留率(retention rate,RR)= 本年度的顾客总数 / 上年度的顾客总数;
顾客消费率(spending rate,SR)= 顾客总消费额 / 顾客总数;
变动成本(variable cost,VC)= 产品成本 + 服务管理费用 + 信用卡成本等;
获得成本(acquisition cost,AC)= 本年度广告、促销费用 / 本年度顾客总数;
净利润(gross profit,GP)= 总收入 – 总成本;
贴现率(discount rate,DR)= [1 +(风险系数×银行利率)]n ;
利润净现值(net present value profit,NPV)= GP / DR ;
累积NPV = 特定时间内每年NPV 的总和;
顾客终身价值(LTV)= 累积NPV / 顾客总数。
而对于游戏行业来说:
生命周期(Life Time,LT):一个用户从第1次到最后1次参与游戏之间的时间段,一般按月计算平均值;
一般来说,会统计N天内用户的生命周期价值
N天内的每用户的日平均收入(ARPU):活跃用户对游戏产生的平均收入。即每日ARPU =总收入/(总活跃用户×N);
N天的用户终生价值(Life Time Value,LTV):用户在生命周期内为该游戏创造的收入总计,可以看成是一个每日ARPU 值的长期累计。即LTV = 每日arpuxLT。
6、ARPU
ARPU(ARPU-AverageRevenuePerUser)即每用户平均收入。用于衡量电信运营商和互联网公司业务收入的指标。ARPU注重的是一个时间段内运营商从每个用户所得到的收入。很明显,高端的用户越多,ARPU越高。在这个时间段,从运营商的运营情况来看,ARPU值高未必说明利润高,因为利润还需要考虑成本,如果每用户的成本也很高,那么即使ARPU值很高,利润也未必高。

附赠:mapreduce 模板PV程序
package org.apache.hadoop.studyhdfs.mapredce;import java.io.IOException;import org.apache.commons.lang.StringUtils;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.Tool;import org.apache.hadoop.util.ToolRunner;/** * * @author zhangyy * */public class WebPvMapReduce extends Configured implements Tool{ // step 1: mapper class /** * public class Mapper */ public static class WebPvMapper extends // Mapper{ // map output value private final static IntWritable mapOutputValue = new IntWritable(1) ; // map output key private IntWritable mapOutputKey = new IntWritable(); @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // line value String lineValue = value.toString(); // split String[] values = lineValue.split("") ; if(30 > values.length){ context.getCounter("WEBPVMAPPER_COUNTERS