骨骼的动作识别数据集_深度图像&骨骼数据进行动作识别数据集

本文介绍了几个骨骼动作识别数据集,包括UT-Kinect、Florence 3D和NTU RGB + D,详细阐述了它们的特征、类别、样本数量以及在动作识别中的应用,如留一交叉验证方法。同时提到了SBU-Kinect-Interaction数据集,重点关注多人交互动作的识别。
摘要由CSDN通过智能技术生成

UT-Kinect数据集:通过固定的使用一个固定的Kinect和Kinect for Windows SDK Beta版本的深度相机以15 fps的帧速率收集数据,包含RGB,Depth和3Dskeleton数据。UT-Kinect将样本分为10种日常生活行为,包括 走路,坐下,站起来,拿起,携带,扔,推,拉,挥手,拍手 (walk, sit down, stand up, pick up, carry, throw, push, pull, wave hands, clap hands)等。这些行动由10个不同的人执行,同一行动每个人进行两次。总而言之,该数据集中总共包含199个动作序列。请注意,其中一个原始动作是无效的。UTKinect数据集中的帧大小不同,从5到120帧不等。由于其广泛的类内差异和身体部位的遮挡,UTKinect数据集具有挑战性。例如,一些“拾取东西”动作由左手或右手执行,而其他动作则通过双手完成。一般来说,在动作识别中有两种验证方法,即留一交叉验证(leave-one-out cross validation) 和双交叉验证(2-fold cross validation)。

UT-Kinect​​​​​​

leave-one-out cross validation 方法相关论文[1,2,3]:

1、Liu, J, Shahroudy, A, Xu, D, Wang, G. Spatio‐temporal LSTM with trust gates for 3D human action recognition. In: Computer Vision ‐ ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11‐14, 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值