点乘 线性代数_线性代数-1.向量

7f7ed328de1704225794c198809bb14a.png

与教科书上以行列式作为线性代数的开篇不同,我希望在我的专栏中,能够始终遵循在专栏第一篇文章中提出的数学思考框架。即从一个数学领域的基石出发,进而过渡到概念,性质,运算以及推广应用;沿着这一思路,则我们学习线性代数就自然应当由它的基石——向量,以及与向量密切关联的矩阵作为学习的入口。


向量空间与内积空间

首先,以我们并不陌生的平面二维向量作为第一个研究对象。

以前文介绍的线性的两个性质齐次性与可加性为基础,若向量

存在于由两个基向量
所构成的二维平面空间内,即有:

则在该二维平面空间内的向量满足:

向量加法的交换律:

向量加法的结合律:

存在逆向量与零向量:

向量数乘的分配率:

向量数乘的结合律:

可以看到,在这个空间内,通过线性性质定义出了向量与向量的加法,向量与标量的乘法,同时,最为重要的一点是,在这个空间内,向量的所有运算结果也同样都是向量;因此,我们可以将这个空间称为向量空间或线性空间。

但是,可以注意到,向量空间存在着一些缺陷。

其一,由于在这个空间中的所有对象以及运算结果都是向量,因此当我们想要在这个空间中讨论一个向量的大小(也即长度)以及两个向量之间的夹角时,都缺少相对应的数值(也即标量)来刻画。

其二,仅凭线性的齐次性与可加性,我们难以在这个空间中定义向量与向量的乘法。想象一下用空间中的一条直线去“乘“以另一条直线,其结果应该是什么——这个运算既无法被线性性质所抽象定义,显然也无法从空间图形上被具象的定义。

因此,为了一举解决这两个问题,是否能够将向量与向量的乘法定义为一种将向量转变为标量的运算,然后使用这个运算的标量结果来帮助我们描述向量的长度与夹角。

而这,就是我们要引入内积的原因。

我们将向量与向量的乘法定义为:

若有两个

维向量
,则:

,即将两个向量对应坐标的数值相乘而相加。

对于平面二维向量,则有:

通过这样的运算方式,我们得以将向量

转化了标量
,而这个计算结果的标量就被称为内积。

如果从线性性质的角度来看,内积的运算相当于对两个线性函数进行相乘,故它实际是一个双线性函数。

有了内积的定义之后,若我们对向量自己作内积,则有:

借助自身内积这个标量,我们才得以用它来定义向量的长度:

因此,对于基向量

,才能够定义出了它的单位长度为:

我们在向量空间中引入了内积这个标量之后将它称之为内积空间。由于它的作用是将向量映射为标量,故也被称作标量积。


向量夹角

在有了内积运算和向量长度的定义之后,我们就可以进一步的来讨论向量的夹角。

f3de2c0057e4f8169d9fcfbdea34a720.png

有两个空间向量

,它们的夹角为
,根据余弦定理有:

,即:

其中

可由已定义向量的加减运算得:

因此,根据向量长度(模)的定义可带入余弦定理,其中,等式的左边为:

展开后,即为:

其中

即为
即为
,故,其可转化为:

而我们知道根据内积的运算定义,

,则余弦定理的等式即变为:

两边消去相同项后,即得:

可以看到,在有了内积运算的定义之后,我们便可以通过它来计算出任意两个向量的夹角余弦值,进而可以严格的讨论向量的位置关系。


正交性

在有了向量间夹角的概念以后,便有了正交性的概念。

依据正交性的课本定义,当两个向量处于垂直关系,也即夹角

时,由于
,故两个向量的内积为零,满足这个条件时,则称这两个向量为正交。

但是,正交从垂直这个特殊的几何关系引申而来,在线性代数的空间中它的本质含义究竟是什么呢。

让我们尝试用另一个角度来看待正交这个概念:

5f28d1587eed37ae3029d4bff068e0dd.png

若在平面空间中,仅有两个向量(我们暂时没有定义基向量所确定的坐标轴),若我们仅使用向量

为基准,用它去
度量另一个向量
的大小与方向。

可以看到,若向量

的实际长度为
。由于只有一个方向的基准向量
存在,因此我们在它的方向上去观察向量
时,所看到的实际上应该只是向量
在其之上的
投影
,若将它的相对方向长度记为
这里,所谓相对方向是指的是以两个向量的原点为0点,若投影的方向与向量
的方向一致则为正,相反则为负;这里模长的记号只是我为了叙述表达而采用的一种习惯用法,模长的数学定义实际并不会为负。

则对这两者使用比值来进行比较:

这个表达式,也即为两个向量夹角的余弦值:

值的符号代表着两个向量方向的一致性,若
,则代表两者同向;
,则代表二者反向。

:意味着,我们用向量
作为度量测出的向量
长度与它的实际长度完全一致;此时,
恰处于同一直线上。

:意味着,我们测量出来的投影长度与向量实际长度存在着一定的误差,
越接近
代表着测量越准确,越接近于
代表着测量误差的越大;此时,
则成钝角或者锐角。

,则意味着,无论向量
的长度是多少,方向是何处,我们都无法通过向量
测量出来;此时,
恰好垂直。

由此,当我们将这种度量的概念推广到任意两个空间向量,则可以认为:

两个向量夹角

的余弦值,它实际可以看作是以其中一个向量为基准去度量另一个向量,其测量结果的
准确程度

在此基础上,向量正交性实际上可以看作是:在两个向量之间,我们无法使用其中一个向量去度量另一个向量

在很多教科书或讲解视频中,将两个向量的正交性解释为一种无关性。这种无关性,在我看来,其最本质的含义,实际上是这两个向量彼此之间的不可度量性

若以线性变换的角度来看待这种不可度量性,它是在说:若两个向量正交,则在其中一个向量方向上发生的任何线性变换,都无法被分解到另一个向量的方向上。


至此,可以看到,在向量空间中,为了定义向量与向量之间的乘法,以及可以从线性代数的角度严格的讨论向量的长度与位置关系,我们引入了内积运算,在内积的基础上,我们讨论了向量的长度大小,夹角,也因此得以讨论向量的正交性。

如果以空间维度的角度来看待内积的运算,它实际上是一种降维运算,也就是说它将

维向量降维映射成了一个零维标量。

但,如果从齐次线性函数的角度来看待向量与向量相乘,我们会发现:

在两个齐一次线性方程相乘以后,其结果变成了一个齐二次方程,也就是说若其返回的结果依然是一个向量的话,这个向量的维度应该被升高了。

由此,我们会想,与内积运算的降维相对应,是否还存在着可能,使我们能够定义出另一种向量与向量的乘法。而这种乘法应为一种升维运算,它的运算结果应为我们返回一个增加了维度的新向量。

我们就将在之后矩阵的运算中来讨论这种运算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值