我是
python中多处理的新手.我想从每小时长的视频文件中提取功能.处理每个帧大约需要30毫秒.我认为多处理是一个好主意,因为每个帧都是独立于所有其他帧处理的.
我想将特征提取的结果存储在自定义类中.
我阅读了一些示例,最终使用了多处理和队列,如建议here.结果令人失望,现在每个帧需要大约1000毫秒才能处理.我猜我产生了大量的开销.
是否有更有效的方法来并行处理帧并收集结果?
为了说明,我把一个虚拟的例子放在一起.
import multiprocessing as mp
from multiprocessing import Process, Queue
import numpy as np
import cv2
def main():
#path='path\to\some\video.avi'
coordinates=np.random.random((1000,2))
#video = cv2.VideoCapture(path)
listOf_FuncAndArgLists=[]
for i in range(50):
#video.set(cv2.CAP_PROP_POS_FRAMES,i)
#img_frame_original = video.read()[1]
#img_frame_original=cv2.cvtColor(img_frame_original, cv2.COLOR_BGR2GRAY)
img_frame_dummy=np.random.random((300,300)) #using dummy image for this example
frame_coordinates=coordinates[i,:]
listOf_FuncAndArgLists.append([parallel_function,frame_coordinates,i,img_frame_dummy])
queues=[Queue() for fff in listOf_FuncAndArgLists] #create a queue object for each function
jobs = [Process(target=storeOutputFFF,args=[funcArgs[0],funcArgs[1:],queues[iii]]) for iii,funcArgs in enumerate(listOf_FuncAndArgLists)]
for job in jobs: job.start() # Launch them all
for job in jobs: job.join() # Wait for them all to finish
# And now, collect all the outputs:
return([queue.get() for queue in queues])
def storeOutputFFF(fff,theArgs,que): #add a argument to function for assigning a queue
print 'MULTIPROCESSING: Launching %s in parallel '%fff.func_name
que.put(fff(*theArgs)) #we're putting return value into queue
def parallel_function(frame_coordinates,i,img_frame_original):
#do some image processing that takes about 20-30 ms
dummyResult=np.argmax(img_frame_original)
return(resultClass(dummyResult,i))
class resultClass(object):
def __init__(self,maxIntensity,i):
self.maxIntensity=maxIntensity
self.i=i
if __name__ == '__main__':
mp.freeze_support()
a=main()
[x.maxIntensity for x in a]
最佳答案 (常规)python中的并行处理有点痛苦:在其他语言中我们只使用线程,但GIL会使问题变得复杂,并且使用多处理在移动数据时会产生很大的开销.我发现,细粒度的并行性(相对)很难做到,而处理在一个进程中处理10秒钟(或更长时间)的“块”工作可能会更直截了当.
并行处理问题的一个更简单的途径 – 如果你在UNIXy系统上 – 将是一个python程序,它处理在命令行上指定的一段视频(即一个帧号开头,以及一些待处理的帧),然后使用GNU parallel工具一次处理多个段.第二个python程序可以合并来自文件集合的结果,或者从并行管道输入的stdin读取.这种方式意味着处理代码不需要执行它自己的并行性,但它确实需要多次访问输入文件并从中间点开始提取帧. (这也可以扩展到跨多台机器工作而不改变python ……)
如果需要pure-python解决方案,可以使用multiprocessing.Pool.map以类似的方式使用:映射元组列表(例如,(file,startframe,endframe)),然后在函数中打开文件并处理分割.