我们分析一下昨天文章结尾的那一道问题。把10拆成两个自然数相加的形式,那么这两个自然数积最大是多少?积最小是多少?
相信最大值,大家都会想到,5×5=25。最小值是多少呢?可能有网友会说是9,估计也有人会说是0。
到底是9还是0?其实这个最小值是0。我们如果把10拆成两个自然数相加,能拆成哪几种情况?按照有序枚举的方法,可以拆成:10=0+10=1+9=2+8=3+7=4+6=5+5。或许有些网友会说,10也可以拆成9+1和8+2啊。因为我们是算两个数的积,根据两个数相乘,调换顺序积的大小是不变的,所以不必考虑。
因为0是最小的自然数,10=0+10这种情况我们不能排除。
只是题目比较少问这两个数的乘积最小是多少?但是大家要有这个意识。如果题目说把10拆成两个大于0的自然数,就可以排除这种可能性,此时两个自然数最小的积就是1×9=9。
大家有没看出,什么规律呢?当我们把10拆成的两个自然数,它们的差越大,两数的乘积越小。当两个数的差距越来越小,两数的乘积却越来越大。当这两个数都等于5的时候积最大。
当然以后我们做这样的题目,不必每个数都全部枚举拆开,来找它的最大值。最值问题的重要结论:两个数相加和一定,差小积大。
这条结论最好是能背下来,当然如果忘记了,直接用某个数重新推导一遍也可以。
我们举个例子来加深对这个结论的印象。
某校用48米长的铁丝网围成一个长方形,问这个长方形的面积最大是多少平方米?
分析:我们知道长方形的周长公式是:周长=(长+宽)×2。
面积=长×宽
根据两个数的和一定,积要最大,两数最好相等。长加宽正好等于周长的一半,48÷2=24(米)。假如长和宽相等的话,那么长方形的面积最大。
可能有些小朋友会说,这是正方形啊,题目说的是长方形。在几何图形分类中,正方形是属于长和宽相等的特殊长方形。
解:48÷2=24(米)
24÷2=12(米)
12×12=144(平方米)
答:这个长方形面积最大为144平方米。
某校有一道笔直的围墙,该学校准备以围墙为一边,用一道长36米的铁丝网,围成一块长方形生物实验基地,这块基地的面积最大是多少平方米?
这题与上题有相似之处,也有一点点不同,大家算出的最大值是多少平方米?欢迎大家在评论中留下你的答案。