本文来自River教室 洋同学
发明数学,创造数学
像数学家一样思考 数学精彩观念的诞生
数学可以越学越容易吗?贞元数学告诉你:当然可以!
【编者按】
洋同学的小脑瓜里每天都藏着多少的兴奋和好奇呢?上篇文章刚刚用举特例猜想长方形的周长一定,长与宽相等时,其面积最大,这篇文章就有了更加强劲有力的代数证明。看到他的状态如此上乘,任谁不为之动容呢?
前几天,我用举特例的方法证明了周长一定时,长方形的长和宽差距越大,面积越小,长和宽的差距越小则面积越大,这样的规律适用于所有的情况吗?其实我只是通过了几个事例发现了这种规律,它并不一定具有普遍性,还需要严谨的推理证明。今天我就来尝试着用代数式证明一下,如图:
接下来我将一步一步解释我是如何做的。
(1)先假设一个长方形和一个与它周长相等的正方形,如图:
(2)正方形的边长用x来表示,则它的面积()是
;长方形的长是b,宽是a,则它的面积(
)是ab。
(3)为了验证正方形的面积是否大于长方形的面积,可以用减去
,看结果是否大于0,如果大于0说明正方形面积大于长方形面积,小于0就说明我们的猜想是错误的。
但这时遇到了一个问题,x²-ab根本看不出来结果,这里有三组未知数。我想到了一个方法,可以把x用含有a和b的代数式来表示,这样就可以运算了。那么它们之间有什么联系呢?思考后发现2x不就是a+b吗?都是周长的一半,那么x=(a+b)÷2,所以x²就等于(a+b)÷2×[(a+b)÷2],也就等于×
,得到了
。这时,我试着将两个面积相减:
-ab,但也不知道结果是否大于0。
可以继续将这个式子化简吗?首先把ab变成一个分数,且还要保持其大小不变,可以得到,但必须让它们的分母一样才可以,这很简单,根据分数的基本性质,直接让
的分子分母同时乘4就可以了,也就是
,这时
-
就直接变成了
,只用把(a+b)²-4ab算出来就可以。我们可以吧(a+b)²拆分一下,(a+b)×(a+b)就等于a×(a+b)+b×(a+b),也就是a²+2ab+b²,a²+2ab+b²-4ab=a²-2ab+b²,但这样还是不行,最终求助了大人,说再化简一下就是(a-b)²。
正方形的面积减去长方形的面积就是,那么它大于0吗?a和b都是自然数(不等于0),a-b等于正数或者负数。如果a-b大于0,其平方肯定大于0;如果a-b小于0,负负得正,其平方还是大于0,因此
大于0,所以证明了
>
。太棒了,我的猜想是正确的。
那么围成圆柱体的长方形的长和宽差距越大,所围成的圆柱体体积就越大,如果长方形的长和宽差距越小,那么体积就越小。这个猜想怎么证明?我目前还没有想出来,所以还不能说这是一定正确的,但是以后等到学了更多的知识,我还会继续证明的。
责任编辑/张红