java中random方法取值范围_从数学上证明刚体定点转动欧拉角中章动角的取值范围是[0,π]...

我们先来回顾一下各欧拉角——进动角,章动角与自转角的定义。

给定坐标系Oxyz,保持z轴不变,x轴与y轴以z轴为转动轴,逆时针转动角

,这个角就叫进动角。转动后得到新坐标系
。再将新坐标系以
轴为转动轴,逆时针转动
轴与
轴,转过的角度
就是章动角。第二次转动后得到坐标系
。再将这个坐标系以
轴为转动轴,逆时针转动
轴,转动角度
就是自转角。

fbbe231ecea87e24e2d95f136d813259.png

教科书上通常将这三个角的取值范围定为:

相信有很多同学在初学欧拉角过程中有疑惑,为什么

的范围是
而不是
?我把
坐标系绕
轴转它个超过
的角度难道不行吗?

我们不妨看个例子。取

。这样的转动相当于把原来的坐标系以
轴为转动轴逆时针转动了
,得到的新坐标系
轴与
轴重合,
轴与
轴反向,
轴与
轴重合。稍动脑筋,我们可以观察到,这与欧拉角取值
所产生的效果是一样的。这个例子启发我们,对于任何一组章动角
超过
的欧拉角,必存在另一组满足书上取值范围的欧拉角,二者产生的效果是一样的。所以
的取值范围没必要超过

现在我们就来证明这个结论。

将这三个欧拉角所反映的总的坐标旋转变换表示为矩阵,这个矩阵就是:

=

这个矩阵看着挺复杂,其实不难得到,不会的同学推荐移步任延宇老师的网课《理论力学》。

我们的目标就是证明:若任取一组欧拉角

,则存在另一组欧拉角
,使得

要证明存在性,常用的方法有两种,一种是反证法,证明解不存在会引起矛盾,另外一种方法则是直接把解求出来。我们采取第二种方法。

假定

是可以实现的,考察两个矩阵第(3,3)项,可得:

而根据这两个章动角的取值范围:

,可以得到:

顺便可以得到

再考察两矩阵第(1,3)项,得:

利用三角函数和差化积公式便可得到:

再考察两矩阵第(2,3)项,得:

同样利用和差化积公式,得:

联立上述两式,得到:

然而

是不会同时成立的。这是因为若两式同时成立,联立消去
,可得
,这与“
可以任意取值”这一前提矛盾。根据同样的道理,
也不会同时成立。再加上
也不可能同时成立。所以从联立得到的式子中,我们实际得到的是:

再考虑

的取值范围,得到二者的关系:

再考察两矩阵第(3,1)项与第(3,2)项,依据与上述相同的分析,可以得到

的关系:

再将两组欧拉角的变换关系带入矩阵第(1,1),(1,2),(2,1),(2,2)项进行验证。具体的过程各位同学可以自己去算。最终验证,在所求得的变换关系下,

确实是对的。

这样我们不仅证明了章动角的取值范围确实是

,还得到了一种手段来将一组章动角大于
的欧拉角转化为一组章动角小于等于
的欧拉角。回顾刚开始讲的例子,两组欧拉角确实符合我们所求得的变换关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值