python降维可视化 自编码_【Python代码】TSNE高维数据降维可视化工具 + python实现...

1.概述

1.1 什么是TSNE

TSNE是由T和SNE组成,T分布和随机近邻嵌入(Stochastic neighbor Embedding).

TSNE是一种可视化工具,将高位数据降到2-3维,然后画成图。

t-SNE是目前效果最好的数据降维和可视化方法

t-SNE的缺点是:占用内存大,运行时间长。

1.2 TSNE原理

1.2.1入门的原理介绍

举一个例子,这是一个将二维数据降成一维的任务。我们要怎么实现?

首先,我们想到的最简单的方法就是舍弃一个维度的特征,将所有点映射到x轴上:

很明显,结果来看,蓝色和黄色的点交叠在一起,可是他们在二维上明明不属于一类

TSNE就是计算某一个点到其他所有点的距离,然后映射到t分布上,效果就会好一些。

1.2.2进阶的原理介绍

t-SNE的降维关键:把高纬度的数据点之间的距离转化为高斯分布概率。

1.2.2.1 高维距离表示

如果两个点在高维空间距离越近,那么这个概率值越大。

我们来看下面公式,两个公式的内容一致,只是写法不同。

\[P_{j|i} = \frac{e^{\frac{-||x_i-x_j||^2}{2\sigma_i^2}}}{\sum_{i\not=k}e^{\frac{-||x_i-x_k||^2}{2\sigma_i^2}}}

\]

这个形式的公式,只是明显的展示这是高斯分布概率

\[P_{j|i} = \frac{exp(-||x_i-x_k||^2/(2\sigma_i^2))}{\sum_{i\not=k}exp(-||x_i-x_k||^2/(2\sigma_i^2))}

\]

\(||x_i-x_k||^2\)是两个点之间的距离;

距离越大,\(exp(-||x_i-x_k||^2/(2\sigma_i^2))\)越小;

距离越小,\(exp(-||x_i-x_k||^2/(2\sigma_i^2))\)越大;

分母是一个常数,对于一个固定的点\(x_i\);

这个算法的创新点:\(\sigma_i\)对于每一个\(x_i\)都是不同的,是由事先设定的困惑性影响,\(\sigma_i\)是自动设定的。

现在我们能得到\(p_{j|i}\),然后计算联合分布

\[P_{ij} = \frac{P_{j|i}+P_{i|j}}{2N}

\]

从上文中,我们用高斯分布概率来表示两个高维点之间的相似性,再次复述一次两个点越相似,\(p_{ij}\)越大

1.2.2.2 低维相似度表示

在低纬度中,我们使用t分布来表示相似性。这里不探究为什么使用t分布而不是其他分布,具体内容可以看论文

\[Q_{ij} = \frac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k\not=l}(1+||y_k-y_l||^2)^{-1}}

\]

\(y_i,y_j\)是低纬度的点

1.2.2.3 惩罚函数

现在我们有方法衡量高纬度和低纬度的点的相似性,我们如何保证高纬度相似度高的点在低纬度相似度也高?

t-SNE使用的是KL散度(Kullback-Leibler divergence)

\[KL(P|Q) = \sum_{i\not=j}P_{ij}\log\frac{P_{ij}}{Q_{ij}}

\]

1.2.2.4 为什么是局部相似性

当\(P_{ij}\)很大,\(Q_{ij}\)很小(高维空间距离近,低维空间距离远)的惩罚很大,但是高维空间距离远,低维空间距离近的惩罚小。

1.2.2.5 为什么选择高斯和t分布

降维必然带来信息损失,TSNE保留局部信息必然牺牲全局信息,而因为t分布比 高斯分布更加长尾,可以一定程度减少这种损失。

2 python实现

函数参数表:

parameters描述

n_components嵌入空间的维度

perpexity混乱度,表示t-SNE优化过程中考虑邻近点的多少,默认为30,建议取值在5到50之间

early_exaggeration表示嵌入空间簇间距的大小,默认为12,该值越大,可视化后的簇间距越大

learning_rate学习率,表示梯度下降的快慢,默认为200,建议取值在10到1000之间

n_iter迭代次数,默认为1000,自定义设置时应保证大于250

min_grad_norm如果梯度小于该值,则停止优化。默认为1e-7

metric表示向量间距离度量的方式,默认是欧氏距离。如果是precomputed,则输入X是计算好的距离矩阵。也可以是自定义的距离度量函数。

init初始化,默认为random。取值为random为随机初始化,取值为pca为利用PCA进行初始化(常用),取值为numpy数组时必须shape=(n_samples, n_components)

verbose是否打印优化信息,取值0或1,默认为0=>不打印信息。打印的信息为:近邻点数量、耗时、σ

、KL散度、误差等

random_state随机数种子,整数或RandomState对象

method两种优化方法:barnets_hut和exact。第一种耗时O(NlogN),第二种耗时O(N^2)但是误差小,同时第二种方法不能用于百万级样本

angle当method=barnets_hut时,该参数有用,用于均衡效率与误差,默认值为0.5,该值越大,效率越高&误差越大,否则反之。当该值在0.2-0.8之间时,无变化。

import numpy as np

import matplotlib.pyplot as plt

from sklearn import manifold,datsets

'''X是特征,不包含target;X_tsne是已经降维之后的特征'''

tsne = manifold.TSNE(n_components=2, init='pca', random_state=501)

X_tsne = tsne.fit_transform(X)

print("Org data dimension is {}.

Embedded data dimension is {}".format(X.shape[-1], X_tsne.shape[-1]))

'''嵌入空间可视化'''

x_min, x_max = X_tsne.min(0), X_tsne.max(0)

X_norm = (X_tsne - x_min) / (x_max - x_min) # 归一化

plt.figure(figsize=(8, 8))

for i in range(X_norm.shape[0]):

plt.text(X_norm[i, 0], X_norm[i, 1], str(y[i]), color=plt.cm.Set1(y[i]),

fontdict={'weight': 'bold', 'size': 9})

plt.xticks([])

plt.yticks([])

plt.show()

参考内容

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值