python实现TSNE检验 TSNE降维代码

python如何实现TSNE检验并绘图

一般而言TSNE就是一种数据可视化的工具,能够将高维数据降到2-3维(降维),然后画成图。现在也有蛮多可以直接使用的套件,如sklearn.manifold(具体可看:Sklearn TSNE官网)。

代码实现
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

x_tsne = TSNE(n_components=2, learning_rate=100, random_state=501).fit_transform(x_train)  # 降至2维

解释:
n_components=2, 降至的维数(一般为2)
learning_rate=100, 学习率
random_state=501,随机种子
fit_transform(x_train), 要降维的数据

代码以及画图
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt


def plt_tsne(x_train, y_train, name):
    x_train = np.array(pd.read_csv(x_train,index_col=None,header=None))
    y_ = np.array(pd.read_csv(y_train, index_col=None, header=None))
    x_tsne = TSNE(n_components=2, learning_rate=100, random_state=501).fit_transform(x_train)

    plt.figure(figsize=(6, 6))
    r = 2  # 4ls

    area = np.pi * r ** 2  # 点面积

    plt.scatter(x_tsne[y_ == 0, 0], x_tsne[y_ == 0, 1], s=area, c='g', alpha=0.4, label='m5C')
    plt.scatter(x_tsne[y_ == 1, 0], x_tsne[y_ == 1, 1], s=area, c='b', alpha=0.4, label='non m5C')
    plt.legend()
    plt.savefig(name)

    return plt


if __name__ == '__main__':
	x = pd.read_csv('...')
	y = pd.read_csv('...')
	title = 'my_title'
    plt_tsne(x, y, title)

效果展示

在这里插入图片描述

图片来源:https://blog.csdn.net/qq_45714906/article/details/118568358

### t-SNE原理 t-SNE(t分布随机邻域嵌入)是一种用于高数据可视化的机器学习算法。该技术通过将高空间中的复杂结构映射到低空间来实现这一点,通常为二或三以便于人类理解[^1]。 #### 局部相似性优化 t-SNE的核心在于其专注于保持样本之间的局部关系而非全局几何特性。具体来说,在原始高空间中彼此接近的数据点会被转换成在低表示里同样靠近的位置;而相距较远的对象则不必持相同的相对位置。这种处理方式使得t-SNE特别适合捕捉并展现簇状模式以及内部细微差别[^2]。 然而值得注意的是,因为只强调局部特征而导致可能出现的空间扭曲现象——即某些部分被过度拉伸或者收缩,这可能导致解释上的偏差。 ### 应用场景 尽管存在上述提到的一些局限性,t-SNE仍然广泛应用于多个领域: - **气候研究**:分析气象参数间复杂的相互作用; - **计算机安全**:识别恶意软件行为模式; - **生物信息学与癌症研究**:揭示基因表达谱型内的潜在联系; - **图像处理**:辅助理解和分类图片集中的视觉元素。 需要注意的是,虽然可以利用t-SNE的结果作为后续建模过程的一部分,但由于每次执行产生的布局可能不同,所以不适合直接用于训练监督式学习模型。相反,更多是用来支持探索性和描述性的数据分析工作。 ```python import numpy as np from sklearn.manifold import TSNE X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) model = TSNE(n_components=2, random_state=0) np.set_printoptions(suppress=True) print(model.fit_transform(X)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_刘文凯_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值