目标识别的评价指标主要有ROC曲线,missrate(MR,其实就是FALSE Positive)、FPPI、FPPW等。单图像跟踪的评价指标主要有两个,一个是pixel error,一般是算中心距离,另一个是overlap rate,区域重叠率,用重叠区域除以两个矩形所占的总面积Aoverlap /(A1+A2-Aoverlap),常常用pixel error绘制帧误差曲线,用重叠率绘制误差曲线。除此之外,还有针对多目标图像跟踪的评价指标。在VOT中,目标跟踪的评价指标又多了EOA和EOF图,这篇博客都会介绍。
OTB
Online Object Tracking Benckmark,其中主要使用两类评价指标,一类是平均像素误差Average Pixel Error(APE),二类是平均重叠率Average Overlap Rate(AOR)
平均像素误差
顾名思义,平均像素误差就是根据预测目标中心位置与真实位置的像素距离作为误差值,该值越大,说明误差越大。最终结果区帧平均。
平均重叠率
下面这张图应该可以说明问题,平均重叠率\(O\)是以面积来衡量的
$$O = \frac{A_t \bigcap A_{gt}}{A_t \bigcup A_{gt}}$$
时间鲁棒性
像素误差和重叠率都可以做成成功率图(Success Plot),这个大家在Paper里都已经见过了,还有一种成功率图,就是鲁棒性成功率图,又分为时间鲁棒性(TRE)和空间鲁棒性(SRE),吐过不测试鲁棒性,那么就叫做一遍