python目标跟踪精度曲线图_目标跟踪的评价指标(OTB与VOT)

本文介绍了目标跟踪的评价指标,包括ROC曲线、像素误差、重叠率、EOA和EOF图。重点讲解了OTB的平均像素误差和平均重叠率,以及VOT的EAO和EFO指标,分析了时间鲁棒性和空间鲁棒性在目标跟踪中的重要性。
摘要由CSDN通过智能技术生成

目标识别的评价指标主要有ROC曲线,missrate(MR,其实就是FALSE Positive)、FPPI、FPPW等。单图像跟踪的评价指标主要有两个,一个是pixel error,一般是算中心距离,另一个是overlap rate,区域重叠率,用重叠区域除以两个矩形所占的总面积Aoverlap /(A1+A2-Aoverlap),常常用pixel error绘制帧误差曲线,用重叠率绘制误差曲线。除此之外,还有针对多目标图像跟踪的评价指标。在VOT中,目标跟踪的评价指标又多了EOA和EOF图,这篇博客都会介绍。

OTB

Online Object Tracking Benckmark,其中主要使用两类评价指标,一类是平均像素误差Average Pixel Error(APE),二类是平均重叠率Average Overlap Rate(AOR)

平均像素误差

顾名思义,平均像素误差就是根据预测目标中心位置与真实位置的像素距离作为误差值,该值越大,说明误差越大。最终结果区帧平均。

平均重叠率

下面这张图应该可以说明问题,平均重叠率\(O\)是以面积来衡量的

$$O = \frac{A_t \bigcap A_{gt}}{A_t \bigcup A_{gt}}$$

时间鲁棒性

像素误差和重叠率都可以做成成功率图(Success Plot),这个大家在Paper里都已经见过了,还有一种成功率图,就是鲁棒性成功率图,又分为时间鲁棒性(TRE)和空间鲁棒性(SRE),吐过不测试鲁棒性,那么就叫做一遍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值